TABLE OF CONTENTS

Introduction

MOBprogram Syntax

Linking MOBprograms

Trigger Types

Variables

Control Flow Syntax

Operators

If_checks in Control Flow

Commands

Miscellaneous Information

Credits

Quick Reference Sheet

Examples

INTRODUCTION

Progs are used to make things do stuff, basically. You have two

parts of an prog, its code and its trigger. The code is what you write

first, and is what contains the actions of what the thing does. The

trigger is what you set to define what causes it to happen. As an

example, you want a mob to shake hands with someone when the enter the

room. Entering the room would be the trigger, and shaking hands with the

player would be written in the code. Below is an example of how do it.

PROGRAM SYNTAX

Syntax is important, if you mess it up, the MUD could crash, and

that’s bad. [?] is any of the following letter: M O R Mprog stands for

mob program, oprog stands for object program, and rprog stands for room

program.

 Syntax for creating an prog:

[?]prog create <vnum>
 Syntax for entering into the code editor:

code
 Syntax for adding triggers: (must be in the editor of what you wish to
 Add it to, such as redit, oedit, or medit)

add[?]prog <vnum> <trigger type> <argument>

The syntax for adding triggers may be confusing, but that should become

clear explained below.

TRIGGER TYPES

These are listed in alphabetical order.

ACT
Program types: MOB, OBJ, ROOM

Keyword: 'act'

Argument: string

The argument is a phrase, a text string. The trigger is activated

whenever the phrase is contained in the
act() message.

NOTE: Most general trigger. Applies to almost every event which

happens in the mud. Anytime the function act() is called with a

message to be delivered TO_CHAR,TO_VICT,TO_ROOM,etc. the act can be

triggered.Basically this will trigger on almost everything you'll

ever want. Output of emote, and any channel other than say do not

trigger this event. Special case arguments: ‘witness_death’ will

trigger when the mob or obj sees someone die, with $n being the

victim, while ‘witness_murder’ will set $n as the killer. For KOs,
‘witness_ko’ will set $n as the victim, and ‘witness_victory’ will

set $n as the killer.

AGGLOAD
Program type: MOB

Keyword: 'aggload'

Argument: number

The argument is a percentage.

NOTE: Is activated every time the mob is loaded into the game via being a random battle encounter and unlike reset, can target the person responsible for loading them via $n.

AGGRESET
Program type: OBJ

Keyword: 'aggreset'

Argument: number

The argument is a percentage.

NOTE: Is activated whenever a random aggie is loaded. The prog can target the person who caused the aggie to load with $n.

ARESET
Program type: MOB, PC, OBJ, ROOM

Keyword: 'areset'

Argument: number

The argument is a percentage.

NOTE: Is activated when the area the mob/obj/room is in resets.

ALIAS
Program types: MOB, PC, OBJ, ROOM

Keyword: 'alias'

Argument: string

The argument is a phrase, consisting of three parts. The first part of the phrase is a command (even one that doesn’t exist), while the second part is designating whether the command would be targeting an object in the room (obj), an object in your inventory (inv), an object you are wearing (worn), a character in the room (char), or nothing at all (none). An additional parameter, (any) serves as a catch all that is explaind below, and finally the third part is the object or character in the room that is being targeted.

NOTE: As an example, if you wanted to only allow passage if a lever was

pulled (pull being a command that doesn’t exist), then you would

use the syntax:

addrprog <vnum> alias ‘pull obj lever’

In which case, the room (or object) program would only trigger if the player type ‘pull lever’ and if the lever did exist in the room. This may also be used on commands that do exist in the game,

and if the conditions for the program to fire aren’t met, the command will proceed as usual.

You may supply the ‘inv’ argument instead of ‘obj’ to have it only

trigger on an object that is in your inventory. Likewise, the ‘worn’ option will only work on an item that is equipped.

On any: The parameter "none" will

allow a command to fire on an object that isn't there or "obj" an object in the room, its still pretty specific about the command structure. Parameter "any" as an argument as a catch all. For instance, if you had an alias trigger set to argument "look obj corpse" or "look none corpse" it would fire if the command was "look corpse" but NOT if it were "look in corpse". Now, you can "look any in" as an additional catch-all, and all instances of

"look in <whatever else>" would be caught. Clunky description, but best I know how to explain it.

Oprog only: trigwear, triginv, on.

Ie: Addoprog 1 alias 'remove trigwear'

Will trigger ANY usage of the command 'remove' if the object that the prog is on is being worn. Same concept with triginv, except it works in inventory, and 'on' works if the character is 'on' the furniture it is set on.

ALLDEAD
Program types: MOB, PC

Keyword: 'alldead'

Argument: number

The argument is a percentage.

NOTE:
This trigger is activated whenever the mob kills something and there are no alive PCs in the room. Note that it will trigger if it kills an NPC and if there are other active NPCs in the room.

ATTACK
Program type: MOB, PC, OBJ

Keyword: 'attack'

Argument: number

The argument is a percentage.

MOB NOTE: Triggers everytime the mob lands a hit. If the mob lands four
 hits in one round, then it triggers four times.

OBJ NOTE: Fires when the character holding the object lands a hit. An
 optional ‘worn’ value can be added to make it so that it will
 only trigger when the object is worn. 'Strike' may be used in
 place of worn to make it only fire when the triggered object is
 equipped AND is the object landing the hit.

BRIBE
Program types: MOB, PC

Keyword: 'bribe'

Argument: number

The argument is any positive integer number.

NOTE:
This trigger is activated whenever money is given to the mobile.

If the amount given exceeds the number, then process the commands.

Note again, that an argument of '1' would act as a default r

response. Also note that if the script is not triggered (because of

too little money having been given), the mobile still keeps the

money… Adding the word 'exact' to the end will make it only
trigger on an exact amount being given.

BUY
Program types: OBJ

Keyword: 'buy'

Argument: number

The argument is a percentage.

NOTE:
This trigger is activated whenever the obj it is on is purchased.
The specific idea behind this is combined with the cansee trigger
to make conditional shops. A shopkeep can sell something that is
only visible/purchasable under certain conditions (such as a quest
variable progressing to a certain point), but then upon purchase
the prog that is blocking visibility (the cansee prog) can be
removed.

See Also: MOBBUY & MOBSELL

CANSEE
Program types: MOB, OBJ

Keyword: 'cansee'

Argument: '<variable name> <operator> <value>'

The argument is a variable name, operator, and value.

NOTE: This triggers whenever the game checks to determine if a player can
see an object or mob. The cansee check in the code is how things
like utility mobs are hidden from players entirely. This mimics a
similar functionality if the player doesn’t have the variable and
value
specified by the argument. An example:

addmprog 123 cansee 'diabtest >= 4

In this case, the mob (or object) would effectively NOT exist for a
player whose variable "diabtest" wasn't 4 or higher. Even though
this attaches a prog to a mob or obj, the prog will actually do
nothing (this is hackish as crap, but it works), so there's no
point (or harm) in writing code for the program its attached to. A
builder could acutally just decide to reuse another prog that has
its own purpose for this if they so chose.

The whole point of this is essentially to make conditional mobs
with a lot fewer hoops to jump through, but could also be used to
shift (or add) inventory to shops and all sorts of things.

CASTVIS, CASTVIC, CASTALL, CASTFIN
Program types: MOB, PC, OBJ, ROOM

Keyword: 'castvis' 'castvic' 'castall' 'castfin'

Argument: string

The argument is the name of the spell.

NOTE:
This trigger is activated whenever the spell specified is cast.

Castvis, Castvic & Castall are all variations of the same thing.
Castall is a catch all; it will fire regardless of whether or not there is a target to the spell supplied and whether or not pattern shield is active, but the argument for the prog must match the spell being cast. Castvic will fire if the spell that matches the prog is cast and the target is the victim (or in the case of oprogs, the person holding the object) and ignores pattern shield. Castvis is the same as castvic, but is subject to pattern shield (a shielded spell will not trigger).

Castfin is like castall, but fires when the spell has finished casting. This is the best place to remove the casting variable on

a mob, just be sure to check that it is the mob firing the program.

See spellcast for variations that trigger on any spell
CHALLENGE
Program type: MOB, PC

Keyword: 'chall'

Argument: number

The argument is a percentage. Note that when a mob has a challenge

trigger with a percentage argument and the percentage doesn’t

pass, it will not issue any message to the player, such as the

usual “He ignores your challenge.” message. For that reason, it’s

best to use 100 for the percentage value, and if you want there to

be a chance at failure, use ‘rand’ check within the program itself

and add a fail-safe at the bottom of the program where it will

manually echo a ‘ignores your challenge’ message. Otherwise, when

a player attempts to challenge a mob and receives absolutely no

response, it will be a clear indication that the mob does indeed

have a challenge trigger, and that it just didn’t pass the

percentage check.

DAMTYPE
Program types: MOB

Keyword: 'damtype'

Argument: string

The argument is any classification of damage or skill, such as
bash, slice, red, sound, energy, etc.

NOTE: Fires whenever the mob takes a hit of the specified damage.

DEATH / NODEATH / KO
Program type: MOB, PC, OBJ

Keyword: 'death' 'nodeath' 'ko'

Argument: number

The argument is a percentage.

NOTE:
When the mobile dies, if the random percentage is less than the

argument the mobile performs the MOBprogram commands rather than

the usual death_cry() sequence. This is done before the corpse is

made,
so the commands can be considered the mobiles last gasp. It

could
perhaps destroy the items it was holding (see MOB REMOVE and

MOB JUNK), or create some (see MOB OLOAD), or cast a spell (see MOB

CAST) on the killer and the room, or even goto a new location (see

MOB GOTO) and die there (with a text message, the corpse would seem

to vanish) The position of the mobile is set to STANDING, and so it

can do all the normal commands, without worrying about being DEAD.

However, even if the mobile restores itself to full hitpoints, it

will still die.

This is not a way to immortal mobiles. However, the last thing this

mobile does could be to goto some vacant room, load a fresh version

of itself, drop all its items, force the new mobile to get all the

items and wear them, send the new mobile back to the character who

killed it and force the new mobile to attack that character. Along

with a text message which said the mobile restored itself, this

might be a convincing effect. (Note that your kitten could turn

into a dragon this way too).

There is an alternate death trigger called NODEATH that may be

used. This will cause the death to never actually happen.

When used for oprogs, it triggers when the person wearing the

object dies.

KO triggers when a pet, companion, or PC is knocked unconscious.

DELAY
Program type: MOB, PC OBJ, ROOM

Keyword: 'delay'

Argument: number

The argument is a percentage.

NOTE: This trigger activates when the delay of a mobile/object/room (set

with the MOB/OBJ/ROOM DELAY command) expires. This trigger can be

used
to create staged mobile/object/room behavior, for example, a

guardian could see a player entering a room, give a warning and

activate a delay.
If the player is still present when the

delay expires, the guard would attack the player. (See also MOB

REMEMBER).

A mobile/object/room can have several delay triggers, but every

time the delay timer expires, all the triggers are checked and the

first
successful one executed.

DESC
Program type: MOB, PC, OBJ

Keyword: 'desc'

Argument: number

The argument is a percentage.

NOTE:
This trigger activates whenever a PC tries to look at the
description of the mob or object the program is attached to.
DROP
Program types: OBJ, ROOM

Keyword: 'drop'

Argument: string or object vnum

The argument is either a string containing words to be matched

Against the keywords of the object, or the word "all"; e.g.

argument "long sword" will match to objects "long bow" and "small

sword". Alternatively, the argument can be the virtual number of a

single object.

OBJ NOTE: Fires whenever the object is dropped, argument is ignored.

ROOM NOTE: Fires whenever the object (according to argument) is dropped
 in the room.

EAT/DRINK
Program types: OBJ

Keyword: 'eat'

Argument: number

The argument is a percent. The program triggers whenever the item

it is on is eaten/drank, and it prevents anything that may
otherwise fire from eating/drinking it (pills, fullness, etc.)

ENTRY
Program types: MOB, PC

Keyword: 'entry'

Argument: number

Again a percentage argument.

NOTE: The opposite of greet trigger. Whenever the mobile itself enters a

new room, this can be triggered. Useful for looking around, or

waving or other things that real PCs do when they arrive at a

crowded room.

IMPORTANT: In an entry program, the mobile can only refer to a

random pc ($r in if checks) -- there's no way to know how many PCs

exist in the room the mobile enters! Also, you must check

visibility of the target in your program. This can trigger on
other NPCs.

EXIT
Program types: MOB, PC, OBJ, ROOM

Keyword: 'exit'

Argument: number

Argument is the exit number:

(0: north, 1: east, 2: south, 3: west, 4: up, 5: down)

NOTE: The opposite of entry trigger. This is activated when PC tries to

leave a room through an exit indicated by the argument, and the

mobile/object/room sees the person leave. Useful for having a

single guardian to watch several exits. An exit trigger works

better than an entry trigger, since you can refer to a specific PC

instead of a random PC. IMPORTANT: If this event is triggered, the

victim will not move through the exit. If necessary, you must move

the character yourself in your program (see MOB/OBJ/ROOM

TRANSFER/MOB/OBJ/ROOM GTRANSFER). Also, this event is not triggered

when a character flees from combat or the mobile is not in its

default position.

Objects and rooms will always fire on this trigger regardless of

the PC's visibility status.

All may be used as an argument in place of the number to block

movement in all VALID exits.

Consider the move trigger combined with the block command if a

PC should be able to pass under specific conditions to avoid

needing to use transfers and echoes.

EXIT ALL
Program types: MOB, PC, OBJ, ROOM

Keyword: 'exall'

Argument: number

Argument is the exit number:

(0: north, 1: east, 2: south, 3: west, 4: up, 5: down)

The same as exit trigger, but it can be triggered even if the

mobile cannot see the person trying to leave the room or if
the

mobile is busy.

All may be used as an argument in place of the number to block

movement in all VALID exits.

Consider the move trigger combined with the block command if a

PC should be able to pass under specific conditions to avoid

needing to use transfers and echoes.

EXTRA DESCRIPTION LOOK
Program type: ROOM

Keyword: 'edlook'

Argument: string

This triggers whenever a player looks at an extra description in a

room and the keywords for the trigger match the keywords for the

extra description. Note that the description will show as normal.

In the case of conditional extra descriptions, you make the

description blank and echo in place of the description showing.

FIGHT
Program type: MOB, PC, OBJ, ROOM

Keyword: 'fight'

Argument: number

The argument is a percentage.

MOB NOTE: Useful for giving mobiles combat attitude. It is checked every

 PULSE_VIOLENCE when the mobile is fighting. Can be used to cast

 spells (see MOB CAST), curse at the opponent, or whatever. Only
 the first successful one will be processed to save time. Also,
 this means that the mobile wont get lucky and 1. curse, cast a
 fireball and 2. spit on the player, cast another fireball in
 the same pulse.

OBJ NOTE: Fires when the object is worn when the player wearing it is
 fighting. Targets the opponent. Checked every PULSE_VIOLENCE.

ROOM NOTE:
Fires when there is a fight going on in the room. Targets
 the first person fighting. Checked every PULSE_VIOLENCE.

FISH
Program type: MOB, ROOM

Keyword: 'fish'

Argument: number

The argument is a percentage. This triggers when a player uses the

fish command, which can only be done in a room with the sector of

swim set, and if they have an item in their inventory named
‘fishing pole’.

GET
Program types: OBJ, ROOM

Keyword: 'get'

Argument: string or object vnum

The argument is either a string containing words to be matched

Against the keywords of the object, or the word "all"; e.g.

argument "long sword" will match to objects "long bow" and "small

sword". Alternatively, the argument can be the virtual number of a

single object.

OBJ NOTE: Fires whenever the object is picked up, argument is ignored.

ROOM NOTE: Fires whenever the object (according to argument) is picked up
 in the room.

GIVE
Program types: MOB, PC, OBJ, ROOM

Keyword: 'give'

Argument: string or object vnum

The argument is either the a string containing words to be

matched against the keywords of the object, or the word "all";

e.g. argument "long sword" will match to objects "long bow" and

"small sword".

Alternatively, the argument can be the virtual number of a single

object.

MOB NOTE: This is triggered whenever something is given to the mobile.

Best used for quests. Since the first successful trigger is the

only one of this type which is processed, having an "all" argument

in the script at the end of the MOBprogram list is essentially a

default response.

OBJ NOTE: This is triggered whenever the object is given to someone else.

Also, the argument is ignored in this case.

ROOM NOTE: This is triggered whenever the object (according to argument)

is given to someone in the room.

GREET/GRNPC
Program types: MOB, PC, OBJ, ROOM

Keyword: 'greet' 'grnpc'

Argument: number | argument

Again a percentage argument.

NOTE: Whenever someone enters the room with the mobile/object/room, and

the mobile saw the person enter, this is checked. Good for

shopkeepers who want to welcome customers, or for pseudo-aggressive

mobiles which need to discriminate on who they attack. Greet

trigger activates only when the mobile is not busy (fighting, sitting, sleeping etc.). If you want to be sure to catch all players, use grall. You can also provide an optional second argument to make it trigger only if a player enters from a specific direction. You may use the name or the number for the direction.

Objects and rooms will always fire on this trigger regardless of

the PC's visibility status.

Alternate keyword 'grnpc' is a greet trigger that will activate

when another NPC enters the room. Greet/Grall is PC only.

GREET ALL
Program types: MOB, PC

Keyword: 'grall'

Argument: number

Again a percentage argument.

NOTE: Like greet, but it can be triggered even if the mobile didn't see

the arrival (i.e. sneak, invis, etc) or is busy. Most useful for

faking teleport rooms or for impassable guardians.

GUNBLADE
Program type: OBJ

Keyword: 'gunblade'

Argument: number

The argument is a percentage.

NOTE: Fires in place of a traditional gunblade trigger pull

occurring.

HIT/IMMHIT
Program type: MOB, PC, OBJ

Keyword: 'hit' 'immhit'

Argument: number

The argument is a percentage.

MOB NOTE: Triggers everytime the mob takes a hit. If the mob is hit four
 times in one round, then it triggers four times.

OBJ NOTE: Fires when the character holding the object takes a hit. An
 optional ‘worn’ value can be added to make it so that it will
 only trigger when the object is worn.

If the “hit” is 0 damage, this will not fire. Use “immhit” if you wish to trigger on a 0 damage hit, miss, parry, etc.

HIT POINT PERCENTAGE
Program type: MOB, PC

Keyword: 'hpcnt'

Argument: number

The argument is a percentage.

NOTE: Is activated at each PULSE_VIOLENCE when the mobile is fighting. It

checks to see if the hitpoints of the mobile are below the given

percentage. Multiple hpcnt triggers should be listed in increasing

order of percent since a 40% will always be activated before a 20%

and, only the first successful trigger is performed. (See also

MOB FLEE).

HOUR
Program type: MOB, PC

Keyword: 'hour'

Argument: number

The argument is, using military time, whatever hour it currently

is. (0=12:00am, 1=1:00am… 12=12:00pm, 13=1:00pm… 24=12:00am etc…)

NOTE: Is activated when the time changes to the hour which is set as the

argument. Example: Your code is to make a bird echo “KOOKOO!” and

the trigger is 12, then at 12:00pm (MUD time) the mprog will

activate.

KEYITEM
Program types: MOB, PC, OBJ, ROOM

Keyword: 'keyitem'

Argument: string or object vnum

The argument is either the string containing words to be

matched against the keywords of the object; e.g. argument "long
 sword" will match to objects "long bow" and “small sword" or

alternatively, the argument can be the virtual number of a single

object, which is safer. This only works on keyitems, through the syntax of ‘keyitem use <item>.’

MOB NOTE: This is triggered whenever someone in the room with the mob

attempts to use the keyitem specified.

OBJ NOTE: This is triggered when someone tries to activate the keyitem

itself.

ROOM NOTE: This is triggered whenever someone in the room attempts

to use the keyitem specified.

KILL
Program type: MOB, PC

Keyword: 'kill'

Argument: number

The argument is a percent once again.

NOTE:
This trigger is checked whenever a PC attacks the mobile. The check

occurs only ONCE, in the beginning of combat. Useful for summoning

assistance etc. (See MOB MLOAD).

LEFTAREA
Program type: MOB, OBJ

Keyword: 'leftarea'

Argument: number

The argument is a percent.

NOTE: This trigger fires whenever the mob or object changes room, and the
 room they change into isn’t in the area their vnum originates from.

LEVEL
Program type: MOB, PC, OBJ

Keyword: 'level'

Argument: argument + number

For objects, The argument is an argument consisting of the values
‘worn’, ‘held’, or ‘both’ along with a number representing a
percentage. For mobs, the argument is ignored.

MOB NOTE: This is checked whenever the character the prog is attached to
levels up.

OBJ NOTE: This trigger is checked whenever a PC levels that has an object
on their person that has a program with this check. If the worn
value is set, then this only works when they are wearing the item,
the held value will work only while in their inventory, while the
both value will work either way. The number value represents the
percentage chance for the program to fire.

LOOK
Program type: MOB, PC, OBJ, ROOM

Keyword: 'look'

Argument: number

The argument is a percentage.

NOTE:
This trigger is activated whenever a PC tries to look at a room.

It will keep the room description from displaying, but still will

present the room title, exits, and contents of the room. This

might be useful for setting up things like conditional room

descriptions and such. See the “lookdesc” command.

MAPBOOK
Program type: OBJ

Keyword: 'mapbook'

Argument: number

The argument is a percentage.

NOTE:
This trigger is activated whenever a PC uses ‘mapbook look’ on the
map that the prog is attached to.

MOBBUY / MOBSELL
Program types: MOB

Keyword: 'mobbuy' 'mobsell'

Argument: number

The argument is a vnum.

NOTE:
This trigger is activated whenever the shopkeeper buys or sells the
object in question. BUY is for when a player buys an object, SELL
is for when a player sells an object.

MOVE
Program types: MOB, OBJ, ROOM

Keyword: 'move'

Argument: number

Argument is the exit number:

(0: north, 1: east, 2: south, 3: west, 4: up, 5: down)

The same as exit trigger, but it can be triggered even if the

mobile cannot see the person trying to leave the room or if
the

mobile is busy, and this will NOT prevent the person from leaving

the room. Combined with the ‘block’ command, this is a great

alternative to the exit/exall triggers if you need to allow a

player to only be able to pass under specific conditions.

All may be used as an argument in place of the number to block

movement in all VALID exits.

MURDER
Program types: MOB, PC, OBJ

Keyword: 'murder'

Argument: number

The argument is a percentage.

NOTE:
This trigger is activated whenever the mob kills a PC or an NPC. It can also trigger on an object whenever the person wearing the object kills something.

OPEN / CLOSE
Program types: MOB, OBJ, ROOM

Keyword: 'exit'

Argument: number

Argument is the exit number (0:north, 1:east, 2:south 3:west etc.)

NOTE: This triggers whenever a PC attempts to open/close a door.

OBJOPEN
Program types: OBJ

Keyword: 'objopen'

Argument: number

Argument is a percentage.

NOTE: This triggers whenever the object itself is opened.

PETLOG/COMPLOG
Program types: MOB

Keyword: 'petlog' 'complog'

Argument: number

Argument is a percentage.

NOTE: This triggers whenever an NPC Pet/Companion with the prog attached

logs into the game with a PC.

PULSE/FPULSE
Program type: MOB, PC, OBJ, ROOM

Keyword: 'pulse' 'fpulse'

Argument: number

The argument is a number.

NOTE: Is activated every <argument> pulses, where <argument> is the

number that is supplied. If the argument is 5, then the prog

will activate every 5 pulses. There are 15 pulses per tick.

1 pulse = 4 seconds, 1 tick = roughly 1 minute RL time.

This only works if the mob is in the default position.

An alternate, mob-only version works with combat called “fpulse”.

PUT [OPUT/CPUT]
Program types: OBJ

Keyword: 'oput' 'cput'

Argument: number

The argument is an obj vnum, or can use 0, any, or all.

NOTE: This trigger is checked when an object is put into a container.
 The OPUT trigger is put on an object being put into a container and

the number argument should be the vnum of the container it is going
in. The CPUT trigger is put on a container that has an object
being put into it, and the number argument should be the vnum of
the object being put into it.

QUIT
Program types: MOB, PC, OBJ, ROOM

Keyword: 'quit'

Argument: number

The argument is a percentage.

NOTE: This trigger is checked when a player in the room quits. If the
player is prevented from quitting for any reason, this will not
fire. This trigger does not prevent a player from quitting; it
fires before the quitting is finished.

RANDOM
Program types: MOB, PC, OBJ, ROOM

Keyword: 'random'

Argument: number

The argument is a number betweeen 0 and 99 inclusive.

NOTE: This trigger is checked at each PULSE_MOBILE and if the argument is

greater than a percentage roll the trigger is activated. This will

happen even if there is no PC in the room with the mob/object/room,

but there must be players in the same area. It is useful to give

mobiles a bit of a personality. For instance a janitor who stops to

spit tobacco, or complain about the hours, or wonder why there are

no woman janitors on muds, or a fido which barks or growls or pees

on the curb is much more alive than one which just sits there

scavenging.

Note that this trigger is checked only when there are players in

the area. If you want this event to be triggered always, you must

set the ACT_UPDATE_ALWAYS flag of the mobile.

This trigger for objects is checked at each PULSE_TICK, and for rooms at each PULSE_AREA.

READY
Program type: MOB, PC

Keyword: 'ready'

Argument: number

The argument is a percentage.

NOTE: It will fire whenever the mob has become free of any wait and

daze. While the "mob ready" command can clear any of that, and

combined with the delay stuff, simulate the mob reacting to being

free to act, this combined with the variable stuff will make the

mob actually able to react to wait. For example, you could have

the mob cast a spell and track that the mob is casting via a

variable, and then each time the mob is ready to act, it can expand

or brighten accordingly, and then once the spell fires, have the

mob clear their variable and the brightening will stop.

RECALL/NORECALL
Program types: MOB, PC, OBJ, ROOM

Keyword: 'recall' ‘norecall’

Argument: number

The argument is a percentage.

NOTE: This trigger is checked when a player in the room recalls. If the
player is prevented from recalling for any reason, this will not
fire. This trigger does not prevent a player from recalling; it
fires before the recall is finished.

The NORECALL variant prevents the recall from firing.

RELOAD/UNLOAD
Program types: OBJ

Keyword: 'reload' 'unload'

Argument: number

The argument is an obj vnum, or can use 0, any, or all.

NOTE: This trigger is checked when an ammo is reloaded into or unloaded
from a projectile. If a vnum is supplied, it must match the
projectile’s vnum to succeed. The prog goes on the ammo itself.
Note that after an ammo is reloaded, it ceases to exist.

RESET
Program type: MOB, OBJ

Keyword: 'reset'

Argument: number

The argument is a percentage.

NOTE: Is activated every time the mob is loaded into the game via resets,

which can be from a manual redit reset, an automatic area repop,

reboot, copyover, etc.

RESPONSE
Program type: MOB, PC, OBJ, ROOM

Keyword: 'response'

Argument: string

The argument is an option of either ‘positive’ or ‘negative’.

NOTE: Is activated every time the player gives either a positive

or negative say or emote, such as ‘yes’ or ‘nod’.

SIT
Program type: OBJ

Keyword: 'sit'

Argument: number

The argument is a percentage.

NOTE:
This trigger activates when the object is sat on/in/at, rested

on/in/at, slept on/in/at, or stood on/in/at.

SPEECH
Program types: MOB, PC, OBJ, ROOM

Keyword: 'speech'

Argument: string

NOTE: This is only triggered when the phrase is contained in a message

which has been said by a PC in the same room as the ob/obj/room.

The PC restriction is not necessary, but makes infinite loops

between two talking mobiles impossible. It also makes it impossible

for two NPC's to stand and discuss the weather however. IS CASE

SENSITIVE!!! WILL ONLY WORK W/ LOWER CASE LETTERS!!!

SPELLCAST, SPELLFAIL, SPELLFIN, SPELLMOD
Program types: MOB, PC, OBJ, ROOM

Keyword: 'spellcast' 'spellfail' 'spellfin' 'spellmod'

Argument: number

The argument is a percentage.

NOTE:
This trigger is activated whenever any spell is cast. The percentage argument will determine how likely the trigger fire. Spellcast fires whenever the spell is first cast, spellfail if it fails, spellfin when it finishes, and spellmod anytime it is modified via things like brighten or fade.

See castall for variations that trigger on specific spells.
STEAL
Program type: MOB, OBJ

Keyword: 'steal'

Argument: success | fail | number

The argument is the phrase success or fail on mobs, or a

percentage on objects.

NOTE:
This trigger is activated whenever an attempt to steal from a mob
is made, with success or fail as the argument on when to trigger.
A percentage may be used in the prog itself to determine rate of
success. For objects, it only triggers on success based on the
numerical value.

SURRENDER
Program type: MOB

Keyword: 'surr'

Argument: number

The argument is a percentage.

NOTE:
This trigger activates when the mobile is fighting and the

opponent issues a "surrender" command. When triggered, both parties

will cease fighting, and the mobile can accept the surrender

(perhaps taking all equipment from the character with MOB REMOVE).

Note that if the mobile does not accept the surrender, it must

resume fighting with MOB KILL.

If a character surrenders and the mobile does not have a surrender

trigger, or the trigger does not activate, the fight resumes

normally.

TALK
Program type: MOB, PC

Keyword: 'talk'

Argument: number

The argument is a percentage.

NOTE: When a mob has a talk trigger with a percentage argument and the
percentage doesn’t pass, it will not issue any message to the
player, such as the usual “He isn’t interested in conversation.”
message. For that reason, it’s best to use 100 for the percentage
value, and if you want there to be a chance at failure, use ‘rand’
check within the program itself and add a fail-safe at the bottom
of the program where it will manually echo a ‘isn’t interested in
conversation’ message. Otherwise, when a player attempts to talk
to a mob and receives absolutely no response, it will be a clear
indication that the mob does indeed have a talk trigger, and that
it just didn’t pass the percentage check.

TICK
Program type: MOB, PC, OBJ, ROOM

Keyword: 'tick'

Argument: number

The argument is a percentage.

NOTE: This trigger checks for activation at every “tick” which is
approximately 60 seconds.

THROW
Program type: OBJ

Keyword: 'tick'

Argument: number

The argument is a percentage.

NOTE: This trigger will active when the object it is on is thrown and
lands it’s hit on a victim. If the hit would otherwise miss or do
no damage, the program will not trigger. If the trigger hits, the
damage it would otherwise do is skipped.

TRAP
Program type: MOB, PC, OBJ, ROOM

Keyword: 'trap'

Argument: number

The argument is a percentage. This trigger will activate any time

upon which a player has activated either a trapped door, trapped

container, or trapped portal. This trigger will stop the original

trap from firing, executing the program instead. A successful
‘pick trap’ attempt will bypass this trigger.

USE
Program type: OBJ

Keyword: 'use'

Argument: number

The argument is a percentage.

NOTE: This trigger activates whenever a player attempts to “use” the item
that the program is attached to.

WATCH
Program types: MOB, PC

Keyword: 'watch'

Argument: number

Argument consists of 1 required number followed by two optional.

The first argument is how frequently (based on pulses) the trigger will attempt to activate. The second number is an optional distance value that will modify how far within straight line of sight the mobile will “watch”. The third number, also optional but dependant on the inclusion of the second number, will specify what direction to watch.

NOTE: This program will trigger whenever a valid target is found based on

the arguments supplied. Triggering this will, by default, do

nothing other than supply a target for the rest of the prog. The

specific intention for this is to code "guard" mobs that are

watchful of a hall, and being seen in the hall by the guards will

cause the guard to check if you are a valid aggro target, and if

so, he will come to your position to attack you. This could have

plenty of other non combat or aggressive oriented purposes as well,

such as a mob keeping an eye out on a general area to approach a

traveller for help, just as an example.

Additional note with watch... it will only trigger if the mob can

see the victim, but since sneak only removes the entrance/exit

messages, a player sneaking will still be caught with this. You

can, however, make an exception in the prog itself via something

like a check to see if the target is affected by sneak.

WEAR/REMOVE

/Program type: OBJ

Keyword: 'wear'

Argument: number

The argument is a percentage.

NOTE:
This trigger activates when the object is worn or wielded, or

if remove is given as the argument, when it is removed.

VAREXP
Program type: MOB, PC

Keyword: 'varexp'

Argument: string

The argument is a variable name.

NOTE:
This trigger activates when the specified variable on the

target expires as a result of a variable timer.

NOTE: No MOBprograms will be successful when the mobile is charmed

(since it has no self volition, it should act like it has none) to

protect mobiles which are given special powers from being

implemented by a player.

VARIABLES

To make things come alive, variables are needed. These are

represented in the Programs by using a dollar sign convention as in the

socials. When the mud command is processed, these variables are expanded

into the values shown below. Usually, it is best to use the short descriptions of mobiles and the names of players when speaking them, but

if you are performing an action to someone almost always you want the

name. The title field for players is an extra that probably wont often be

used. Without further hesitation... the variables:

$i
the first of the names of the mobile/object itself (no use w/rooms)

$I
the short description of the mobile/object itself or name of room.

$n
the name of whomever caused the trigger to happen.

$N
the name and title of whomever caused the trigger to happen.

$g
the name and the name of everyone in the group of whomever caused the trigger to happen. Combined with if checks, this will only

affect people that pass the check.

$t
the name of a secondary character target (i.e A smiles at B)

$T
the short description, or name and title of target (NPC vs PC)

$r
the name of a random PC in the room

$R
the short description, or name and title of the random PC

$u
the name of a random NPC in the room

$U
the short description, or name and title of the random NPC

$a
the name of a random PC or NPC in the room

$A
the short description, or name and title of the random PC or NPC

$q
the name of the Program target (see MOB/OBJ/ROOM REMEMBER)

$Q
the short description of the Program target

$c
the race (or icrace) of the target

$f the name of the mob’s “master”

$v the name of whoever the mob is fighting

$V the short description of whoever the mob is fighting

$j
he,she,it based on sex of $i (doesn't work with rooms).

$e
he,she,it based on sex of $n.

$E
he,she,it based on sex of $t.

$J
he,she,it based on sex of $r.

$k
him,her,it based on sex of $i (doesn't work with rooms).

$m
him,her,it based on sex of $n.

$M
him,her,it based on sex of $t.

$K
him,her,it based on sex of $r.

$l
his,hers,its based on sex of $i (doesn't work with rooms).

$s
his,hers,its based on sex of $n.

$S
his,hers,its based on sex of $t.

$L
his,hers,its based on sex of $r.

$o
the first of the names of the primary object (i.e A drops B)

$O
the short description of the primary object

$p
the first of the names of the secondary object (i.e A puts B in C)

$P
the short description of the secondary object

$w
the name of the person with the obj in their inventory.

$W
the name of the person wearing the obj.

$h
the name of the person wearing or holding the obj.

$z
displays the numerical value of the last damage call

Also, in if_checks, the accepted variables are the basic ones

(i,n,t,r,o,p,q). If a variable is referenced that doesnt exist, then the

value is simply left blank or replaced with "someone"/"something" in

output (i.e referring to $o when the trigger is: A kisses B)

If variable $q has not been defined, it is automatically set to the

last player that has triggered the program being executed (i.e. variable $n). Once $q has been defined, it can be modified with REMEMBER and

FORGET commands in a program. Variable $q lets the mobile/object/room "remember" a player across different programs, which can be useful. Note

that $q is set automatically only the FIRST TIME the mobile/object/room executes a program, every time thereafter it must be set with a REMEMBER

command.

The only problem with the variables is that the secondary object and the secondary target are passed by act() in the same location. This

means that if you reference $t in an A puts B in C situation, the

result will probably be a happy mud crash or some weird side effect,

espescially if $t is used in an if_check (i.e. if isnpc($t) in the above

situation) The basic fix for this is to change everyone who calls the act() procedure to specify a secondary object and a secondary character.

But that is a fairly comprehensive trivial twiddle, so we left it the way

it is so that, you arent forced to make all those twiddles to use the

Programs.

CONTROL FLOW SYNTAX

Flow of control commands may also be used in the programs. Here is the syntax for a flow of control command.

The parts between [and] are optional.

"if" " " {if_check_1} {argument} [{operator} {value}] NL

["or" " " {if_check_2} {argument} [{operator} {value}] NL]

["or" " " {if_check_N} {argument} [{operator} {value}] NL]
 . . .

["and" " " {if_check_N} {argument} [{operator} {value}] NL]

["and" " " {if_check_N} {argument} [{operator} {value}] NL]

.
 .

.

[{program_command_1} NL]

[{program_command_2} NL]

 . . .

["break" NL]

 . . .

[{program_command_N} NL]

["else" NL]

[{program_command_1} NL]

[{program_command_2} NL]

 . . .

["break" NL]

 . . .

[{program_command_N} NL]

"endif" NL

Basically, it is: an 'if' line, followed by zero or more 'or' lines, followed by zero of more 'and' lines ('and' and 'or' lines can be in any order) followed by zero or more legal mud commands, which may contain a 'break' line, possibly followed by an 'else' line , followed by zero or more legal mud commands, which may contain a 'break' line, followed by an 'endif' line.

The only new syntax labels are all in the IF/OR/AND line:

--Explanations

An IF_CHECK is a string which describes under what context to compare things. The ARGUMENT is the reference point from which the LHS of an expression comes. The OPERATOR indicates how the LHS and RHS are going to be compared. The VALUE is the RHS of the expression to be compared by the operator.

The BREAK command bails out of the entire Program regardless of the

level if nesting. (END is a synonym for BREAK).

If that looks confusing, skip to the end of the document and review the

examples. Hopefully that should clear things, otherwise you'll probably have to give me a mail since examples are the best way I know to explain syntax.

OPERATORS

Most of the basic numeric operators are legal and perform the same

function as in C.

Operators: == != > < >= <=

If_Checks In Control Flow

The provided list of if_checks and their arguments are below. They

should all be fairly obvious in what they do, but some of the more obtuse

deserve a slight explanation. Any '==' operator can be replaced with any of the available ones described above. The argument $* refers to any of the variables which make sense for that if_check (i.e. for an if_check which is referencing a person the only valid variables would be $i, $n, $t, $r or $q) A value type of string is a sequence of characters. It does not need to be included in quotes or anything like that (i.e. if name $n fido). The if_checks work for all types of programs unless otherwise noted.

There are five types of if checks:

Type 1: Keyword and value

rand num

 Is random percentage less than or equal to num

mobhere vnum

 Is a NPC with this vnum in the room

mobhere name

 Is a NPC with this name in the room

objhere vnum

 Is an object with this vnum in the room

objhere name

 Is an object with this name in the room

mobexists name

 Does NPC 'name' exist somewhere in the world

objexists name

 Does object 'name' exist somewhere in the
 world

isclosed dir#

 Is the exit in ‘dir#’ closed

islocked dir#

 Is the exit in ‘dir#’ locked

isblocked dir#

 Is the exit in ‘dir#’ blocked

passable dir Is the exit in <dir> (# or name) passable

passmob dir Is the exit in <dir> normally passable?

serverday name/# Is the real world day ‘name’ or #

servermonth name/# Is the real world month ‘name’ or #

field1
color Is the room's 1st element 'color'?

field2
color Is the room's 2nd element 'color'?

field3
color Is the room's 3rd element 'color'?

field4
color Is the room's 4th element 'color'?

field5
color Is the room's 5th element 'color'?

locked
color/any Is the room's element locked to 'color'?

sector
type Is the room's sector ‘type’?

mobreset
vnum Does the room's have specified reset?

objreset
vnum Does the room's have specified reset?

rflag

flag Does the room's have room flag?

objroom
name Does the room have an object ‘name’ here?

Type 2: Keyword, comparison and value

People == integer| Is the number of people in the room equal to
 integer

players == integer| Is the number of PCs in the room equal to integer

mobs
 == integer| Is the number of NPCs in the room equal to
 integer

clones == integer| Is the number of NPCs in the room with the same
 vnum as the NPC who activated the program equal
 to integer. ONLY WORKS WITH MOBprogs

areapcs == integer| Is the number of PCs in the AREA equal to integer

order == integer| Is the order (of several similar NPCs) of the NPC

 who activated the trigger equal to integer. ONLY
 WORKS WITH MOBprogs

hour
 == integer| Is the hour (game time) equal to integer. ONLY
 WORKS WITH MOBprogs

pulse == integer| Is the current pulse equal to integer. There are

 15 pulses per tick. ONLY WORKS WITH MOBprogs

moonphase == integer| Is the current moonphase equal to integer.

New Moon: 0 - 3

Waxing Crescent: 4 - 7

First Quarter: 8 - 11

Waxing Gibbous: 12 - 15

Full Moon: 16 - 19

Waning Gibbous: 20 - 23

Last Quarter: 24 - 27

Waning Crescent: 28 - 31

Month == integer| Is the current month equal to integer.

(01) Winter Month of Shiva

(02) Winter Month of Timmith

(03) Spring Month of Phoenix

(04) Spring Month of Rose

(05) Spring Month of Ryzic

(06) Spring Month of Guion

(07) Summer Month of Havoc

(08) Summer Month of Soritan

(09) Summer Month of Jay

(10) Summer Month of PhyrePhox

(11) Summer Month of Midboss

(12) Autumn Month of Citan

(13) Autumn Month of Bahamut

(14) Autumn Month of Tyladras

(15) Autumn Month of Rakka

(16) Winter Month of Leer

(17) Winter Month of Diablos

serverhour == integer| Is the real world hour equal to integer

servermin == integer| Is the real world minutes equal to integer

serverdate == integer| Is the real world day/date equal to integer

Type 3: Keyword and actor

isnpc $*

 Is $* an NPC

ispc $*

 Is $* a PC

pchere $* Is the PC who activated the prog still here

isgood $*

 Does $* have a good alignment

isneutral $*

 Does $* have a neutral alignment

isevil $*

 Does $* have an evil alignment

isimmort $*

 Is $* an immortal (level of $* > LEVEL_HERO)

ischarm $*

 Is $* affected by charm

isfollow $*

 Is $* a follower with their master in the room

hasmaster $*

 Is $* following someone

isactive $*

 Is $*'s position > POS_SLEEPING

isdelay $*

 Does $* have a delayed MOBprogram pending

isvisible $*

 Is $* visible to NPC who activated the program

hastarget $*

 Does $* have a MOBprogram target in the room

istarget $*

 Is $* the target of NPC who activated the
 program

exist $*

 Does $* exist in the world?

cansfkar $* Can $* promote to the 1st promotion?

canpfkar $* Can $* promote to the 2nd promotion?

iscasting $* Is $* casting a spell?

isfighting $* Is $* in combat?

isghost $*

 Is $* a ghost?

haspet $*

 Does $* have a pet?

maxpets $*

 Does $* have max number of allowed pets?

hascomp $*

 Does $* have a companion?

nofollow $*

 Does $* have nofollow set?

canagg $*

 Would $* be a valid aggro target?

cansee $*

 Can the mob see $*?

istarget $* Is the mob the target of $*'s spell? MOB ONLY

hasdaze $*

 Does $* have daze?

haswait $*

 Does $* have wait?

screenread $*

 Does $* have screenreader mode on?

backrow $*

 Is $* in the backrow (effectively)?

noattack $*

 Is $* flagged noattack?

Type 4: Keyword, actor and value

affected $* 'affect' Is $* affected by 'affect'

act $* 'act' Is $*'s ACT bit 'act' set

off $* 'off' Is $*'s OFF bit 'off' set

imm $* 'imm' Is $*'s IMM bit 'imm' set

absorb $* 'absorb' Is $*'s ABSORB bit 'absorb' set

res $* 'res' Is $*'s RESIST bit 'res' set

vuln $* 'vuln' Is $*'s VULN bit 'vuln' set

carries $* 'name' Is $* carrying object 'name'

carry_all $* 'name' Does $* have object 'name' in inventory,

 keyring, storage, or on pet?

wears $* 'name' Is $* wearing object 'name'

has $* 'type' Does $* have object of item_type 'type'

uses $* 'type' Is $* wearing object of item_type 'type'

name $* 'name' Is $*'s name 'name'

char $* $* Is $* and $* the same char

pos $* 'position' Is $*'s position 'position' (sleeping etc.)

clan $* 'name' Does $* belong to clan 'name'

isleader $* 'name' Is $* a leader of clan 'name'

race $* 'name' Is $* of race 'name'

class $* 'name' Is $*'s class 'name' or a promotion of class

class2 $* 'name' Is $*'s class 'name'

objtype $* 'type' Is $*'s item_type 'type'

hasskill $* 'skill' Does $* have 'type' at 75% or higher

hasgf $* 'vnum' Does $* have a GF with the vnum 'vnum'

haskeyitem $* 'vnum' Does $* have a key item with the vnum 'vnum'

direction $* ‘dir name’ Is $* east/west/here/etc of the mob?

contains $* 'vnum|obj' Does $* contain vnum or obj?

hascard $* 'name|num' Does $* have Triple Triad card?

castelem $* 'type' Is $* casting a spell colored ‘type’?

casttarget $* 'name' If $* is casting, does it target ‘name’?

hasprog $* 'vnum' Does $* have a prog with the vnum 'vnum'

cooldown $* 'skill' Does $* have 'skill’ on cooldown?

ammo $* 'svnum' Is $* a projectile with ammo 'vnum' loaded?

maxcomp $* 'num' Does $* have max allowed companions of type
 ‘num’? 1:any, 2:temp, 3:story, 4:perm, 5:pc

activecomp $* ‘num’ Does $* have max active companions of type?

spec $* ‘name’ Does $n have spec ‘name’ or ‘any’?

Type 5: Keyword, actor, comparison and value

vnum $* == integer| Is $*'s virtual number equal to integer

hpcnt $* == integer| Is $*'s hit point percentage equal to integer

mpcnt $* == integer| Is $*'s mana point percentage equal to integer

room $* == integer| Is vnum of the room $* is in equal to integer

sex $* == integer| Is $*'s sex equal to integer

level $* == integer| Is $*'s level equal to integer

align $* == integer| Is $*'s alignment equal to integer

money $* == integer| Does $* have money == integer

objval# $* == integer| Is $*->value[#] equal to integer (# from 0-4)

grpsize $* == integer| Is $*’s group equal to integer

hometown $* == integer| Is $*’s hometown equal to integer

stpoint $* == integer| Is $*’s story point value equal to integer

pwr $* == integer| Is $*’s power stat equal to integer

wil $* == integer| Is $*’s willpower stat equal to integer

agi $* == integer| Is $*’s agility stat equal to integer

vit $* == integer| Is $*’s vitality stat equal to integer

chit $* == integer| Is $*’s current hit points equal to integer

mhit $* == integer| Is $*’s maximum hit points equal to integer

cmana $* == integer| Is $*’s current mana points equal to integer

mmana $* == integer| Is $*’s maximum mana points equal to integer

pcelem $* == integer| Is $*’s primary innate element == integer

secelem $* == integer| Is $*’s secondary innate element == integer

rank $* == #|clan # Is $*’s clan (or #) rank == integer

division $* == #|clan # Is $*’s clan (or #) division == integer

region $* == integer| Is $*’s region == integer

items $* == integer| Is $*’s TOTAL items == integer

inventory $* == integer| Is $*’s inventory items == integer

rep $* == faction # | Is $*’s faction reputation == integer

dialogue $* == integer1 / integer2

Integer1 is the stage of the dialogue, integer2 is the dialogue ID.

Ie: dialogue 1 4 is the 1st stage of the 5th dialogue. Dialogues
 span from 0-24. Integer2 is optional, as when it isn’t present, it

defaults to dialogue ID 0.

mapcoords $*
MAP X Y Is $* at map & coords?

var $* [variable name] == integer| Is $*’s variable == to integer

varpos $* [variable name] == [position] [value] | Is *’s variable [position] == to [value]

Note that any check in the Type 5 list can use a variable name in place of integer.

NOTE: Parameters MUST BE separated with spaces (if level $n<10 is NOT

valid, correct syntax is: if level $n < 10).

COMMANDS

1. GENERAL COMMANDS

Syntax: SURRENDER

This command can be issued in combat. If the one giving the command

is a PC and the opponent is a NPC, the NPC will be checked for

a surrender trigger. If the trigger activates, the fight will be

terminated. Otherwise the combat will resume normally. Note that

the mobile can resume the combat in the MOBprogram (see MOB KILL).

If anyone (PC or NPC) surrenders to a PC, the combat will

terminate. The PC can resume the combat with 'kill' command. With

this command, and the use of surrender trigger, non-lethal combat

can be implemented (arenas etc.).

Syntax: FOREACHPC / ENDFOREACHPC
 FOREACHGROUPIE / ENDFOREACHGROUPIE
This command can be entered to cause if checks or other mob

commands to loop through every PC in the room. If there are

if checks supplied, the subsequent commands will skip over any

PCs that do not meet the requirements set forth by the if checks.

2. MOBCOMMANDS

MOBcommands are special commands that allow mobiles to perform

immortal-like actions within a MOBprogram (transferring players or

loading items, for example). Most MOBcommands them are wiz commands which

have been changed to allow for mobiles to perform the commands. In this

version of Programs, players have been prevented from using these

commands by adding a separate interpreter for MOBcommands. This also

speeds up (in most cases) MOBprogram execution when MOBcommands are used.

All MOBcommands are preceded with the word 'MOB' on the command line.

NOTE that some commands are restricted to areas with higher security. Those are grouped together and preceded in this list by an exclamation mark (!).

Syntax: MOB ASOUND [string]

 MOB AECHO [range] [string]

 MOB ZECHO [string]

 MOB WECHO [string]

 MOB GECHO [string]
ASOUND prints the text string to the rooms around the mobile in the

same manner as a death cry. This is really useful for powerful

aggressives and is also nice for wandering minstrels or mobiles

like that in concept. AECHO prints the string to all players

within a specified range. If range of 0 is specified, it defaults

to the same range as the yell command. ZECHO prints the string to

all players in the same area with the mobile. WECHO prints the

string to all players in the same world. GECHO prints the string to

all players in the game.

Syntax: MOB ECHO [string]

 MOB ECHOAT [victim] [string]

 MOB ECHOAROUND [victim] [string]

ECHO displays the string to everyone in the room. ECHOAT displays

the string to the victim only. ECHOAROUND displays the string to

everyone except the victim.

The three options let you tailor the message to goto victims or to

Do things sneaky like having a merchant do:

mob at guard mob echoat guard rescue_please

This coupled with a guard act trigger on rescue_please to:

mob goto $n

mob echo $I has arrived.

It is an affective way of quickly bringing guards to the scene of

an attack. (Note that the merchant has to be the only one of its

kind in the game or have a unique name, otherwise the guard might

go to different mobile...).

Syntax: MOB MLOAD [vnum]

 MOB OLOAD [vnum] [level] {'room'|'wear'}

 MOB VOLOAD [vnum] [victim] {'inventory'|'wear'}

 MOB LOADIN [vnum] [container name|vnum]
 MLOAD creates a mobile and places it in the same room with the

mobile. OLOAD loads the object into the inventory of the mobile. Even if the
item is non-takable, the mobile will receive it in the inventory. This lets a mobile distribute a quest item or load a key or something.

The optional 3rd parameter can be specified; 'room' means to load

the object to the room, 'wear' means to force the mobile to wear

the object loaded (useful for equipping mobiles on the fly).

VOLOAD loads the object into either the inventory or wear slot

of a specified victim.

LOADIN allows the mobile to load an object directly into a
container in the room, by name or vnum.

Syntax: MOB KILL [victim]

Lets a mobile kill a player without having to murder. Lots of

MOBprograms end up with mpkill $n commands floating around. It

works on both mobiles and players.

Syntax: MOB ASSIST [victim]

Lets a mobile start assisting the victim. It will automatically

engage combat with whoever victim is fighting.

Syntax: MOB FLEE

Causes a mobile to unconditionally flee from combat. Can be used

for example with the hit point percentage trigger to simulate

"wimpy" behavior.

Syntax: MOB REMOVE [victim] [vnum|'all'] [quantity]

Lets the mobile to strip an object of given vnum from the victim.

Objects removed are destroyed. If the vnum is replaced with "all",

the whole inventory of the victim is destroyed. This command is

probably most useful for extracting quest items from a player

after a quest has been completed. Quantity is an optional value

that will determine how many of a given vnum it will strip off of

the victim.

Syntax: MOB JUNK [object]

Destroys the object refered to in the mobile's inventory. It prints

no message to the world and you can do things like junk all.bread

or junk all. This is nice for having janitor mobiles clean out

their
inventory if they are carrying too much (have a MOBprogram

trigger on
the 'full inventory')

Syntax: MOB PURGE [argument]
Destroys the argument from the room of the mobile. Without an

Argument the result is the cleansing of all NPC's and items from

the room with the exception of the mobile itself. However, mppurge

$i will indeed purge the mobile, but it MUST be the last command the mobile tries to do, otherwise the mud cant reference the acting

mobile trying to do the
commands and bad things happen.

NOTE: Rather than having the mobile purge themselves, have the mob

do this: ‘mob goto 8’ There is a purgemaster in that room

specifically designed for that task.

Syntax: MOB PURGEME [argument]
The argument is a victim, and if no argument is given, it will default to the mob who used the command. This command sets the NPC victim or the mob itself with the PURGEME act flag, which will cause the mob to be purged if it is not in combat and no PCs are in the room.

Syntax: MOB AT [location] [command]

Perfoms the command at the designated location. Very useful for

doing
magic slight of hand tricks that leave players dumbfounded..

such as metamorphing mobiles, or guard summoning, or corpse

vanishing.

Syntax: MOB GOTO [location]

Moves the mobile to the room or mobile or object requested. It

makes
no message of its departure or of its entrance, so these must

be supplied with echo commands if they are desired.

Syntax: MOB TRANSFER [victim|'all'] [location] <silent>

 MOB GTRANSFER [victim] [location] <silent>

 MOB OTRANSFER [object|’all’] [location]

Sends the victim to the destination or to the room of the mobile as

A default. if the victim is "all" then all the characters in the

room of the mobile are transferred to the destination. Good for

starting quests or things like that.

Gtransfer works like transfer, except that the group the victim

belongs to is transferred with the victim. Otransfer transfers an

object in the room.

The silent parameter is optional, and will do a transfer without

the forced ‘look’.

Syntax: MOB FORCE [victim|'all'] [command]

 MOB GFORCE [victim] [command]

 MOB VFORCE [vnum] [command]

Forces the victim to do the designated command. The victim is not

Told that they are forced, they just do the command so usually some

Mpecho message is nice. You can force players to remove belongings

and give them to you, etc. The player sees the normal command

messages (such as removing the item and giving it away in the above

example) Again, if the victim is "all" then everyone in the

mobiles room does the command. Gforce works like force except that

it affects the group the victim belongs to. Vforce affects all

mobiles with given vnum in the game world. This
is useful for, for

example, purging certain type of NPCs from the game (by forcing

them to purge themselves).

Syntax: MOB CAST [spell] [victim]

Lets the mobile to cast spells. Beware, this does only crude

validity checking and does not use up any mana. All spells are

available regardless of the race or other abilities of the mobile.

You may also use ‘mob cast [command]’ where [command] is any of the

normal casting manipulation commands: Truncate, Widen, Expand,

Compress, Brighten, Fade. In addtion, using ‘mob cast level [#]’

will add the specified number to the total casting level, while
‘reset’ in the place of # will set the casting level to 1, clevel

Will set it to the mob’s level, and vlevel will set it to the

victim’s level. In addition to mob cast, there is also the ‘cast2’

command which is the default method of casting that is pretty much

instant. The spell level of cast2 is defaulted to the mob’s level,

while adding on a specified # to the end will cause it to cast at

the specified number instead, while vlevel maybe supplied to make

it cast at the victim’s level.

Syntax: MOB DAMAGE [victim|'all'] [min] [max] {lethal}

Causes unconditional damage to the victim. Specifying "all" as

victim causes damage to all characters in the room except the

mobile. Min and max parameters define the minimum and maximum

amounts of damage caused. By default, the damage is non-lethal, but

by supplying the optional 'lethal' parameter, the damage can kill

the victim. This command is silent, you must echo all messages

yourself in the program. Useful for implementing special attacks

for mobiles. You may use variables as the min/max, see the section

on variable.

Syntax: MOB ELEMDAM [victim|'all'] [damage] [element] [type]

Causes unconditional damage to the victim. Specifying "all" as

victim causes damage to all characters in the room except the

mobile. Unlike mob damage, when you specify the damage, it is

run through a randomization that will increase or decrease the

damage by 20%. Element may be specified to be one of the following

choices: black, green, red, white, yellow, blue, shadow, gravity,

magma, photon, lightning, blizzard, vampiric, same, opposite,
random or none. Type may be specified as bash, pierce, slash (all
three of which are physical attacks), magical, or random. The
element and type specified will determine how damage is calculated
and soaked based on the defense of the victim.
Syntax: MOB MDAMAGE [victim|'all'] [min] [max]

Causes unconditional mana damage to the victim. Specifying "all" as

victim causes damage to all characters in the room except the

mobile. Min and max parameters define the minimum and maximum

amounts of damage caused. You may use variables as the min/max,

see the section on variable.

Syntax: MOB DELAY

 MOB CANCEL

MOB DELAY sets the time in PULSE_MOBILE after which the mobile's

delay trigger is activated. If the mobile has a program defined

for delay trigger, the program is executed when the timer expires.

MOB CANCEL resets the delay timer.

Syntax: MOB REMEMBER [victim]

 MOB FORGET

This command enables the mobile to remember a player for future

reference in a MOBprogram. The player can subsequently be referred

as '$q' in programs activated by the mobile. MOB FORGET clears

the target. Note that if the first time the mobile runs a program,

$q is automatically set to the player who triggered the event.

Most commonly this command is used in delayed programs, where the

mobile has to remember the player who triggered the original

event, for example to continue conversation.

Syntax: MOB CALL [vnum] {victim} {target1} {target2}

This command lets you call MOBprograms from within a running one,

i.e. to call a MOBprogram subroutine. The first parameter is the

vnum of the program to execute, the second is the victim's name

(for example $n), and the third and fourth are optional object

names. All other parameters except vnum can be replaced with

word 'null' indicating ignored parameter.

MOBprograms can be called recursively, but as a safety measure,

parser allows only 5 recursions.

Syntax: MOB WAIT {victim} {# of pulses}

This command will cause the victim a certain amount of wait state,

based upon the number of which is set. This number is the number

bf pulses. There are 4 pulses per second, thus there are 240

pulses per tick. 1 tick = 1 minute. The victim value may be

skipped and it will default to the mob itself.

Syntax: MOB DAZE {victim} {# of pulses}

This command will cause the victim a certain amount of daze state,

based upon the number of which is set. This number is the number

bf pulses. There are 4 pulses per second, thus there are 240

pulses per tick. 1 tick = 1 minute. The victim value may be

skipped and it will default to the mob itself.

Syntax: MOB STUN {victim}
This command will cause the victim to have their caster

concentration interruption modified to 100%, ensuring that the

caster will fail any spells that have queued. All may be supplied

to affect everyone in the room, while leaving the victim blank will

default to the mob itself. This is great for boss mobs starting

out a fight to ensure that players haven’t loaded up a bunch of

very powerful spells.

Syntax: MOB HUNT {victim}
This command will cause the mob to remember the victim in a hostile

manner and hunt them.

Syntax: MOB READY

MOB READY clears a mob’s wait/daze timer so that they may execute

several commands in a row they may not normally be allowed to.
Syntax: MOB BONUS [victim] [value]
This will bonus a player the amount of exp as specified by value.

Syntax: MOB ADDGIL [victim] [value]
This will bonus a player (or the mob if ‘self’ is supplied as the

victim) the amount of gil as specified by value. Negative values

may be supplied to penalize gil as well.

Syntax: MOB PEACE
MOB PEACE stops all combat in the room with the mobile.

Syntax: MOB SHIFT [color]
MOB SHIFT will push the elemental field of the room toward a specified color. If no color is specified, the color will default toward the mob’s innate element. RANDOM may be supplied as a color randomize the color.
Syntax: MOB LOCK [direction]
This is designed to allow mobs to lock doors without the

required key and to do so silently. It will also automatically

close the door to lock it if necessary.

Syntax: MOB UNLOCK [direction name] open
This is designed to allow mobs to unlock doors without the

required key and to do so silently. If the ‘open’ value is

supplied, the mob will automatically and silently open the door.

Syntax: MOB ADDKEY [victim] [vnum]
Adds an item with the word ‘keyitem’ somewhere in it’s name

value to the player’s list of key items.

Syntax: MOB REMKEY [victim] [vnum]
Removes an item from the player’s list of key items.

Syntax: MOB TRIGGER [NPC victim vnum] [prog vnum] [PC victim | NULL]
This will allow one mob to ‘call’ another mprog onto another mob,

with the supplied target, or NULL if not applicable.

Syntax: MOB FLAG [victim] [type] [flag]
This will allow one mob to toggle any of the following flags on

another mob or itself: act, elem1, elem2, absorb, imm, res, vuln,

off, size, affected, sex, part, race, level

Syntax: MOB SECTOR [flag]
This will allow the mob to toggle the sector flag of the room.

Syntax: MOB SYMBOL [flag]
This will allow the mob to toggle the world map symbol of the room.

Syntax: MOB STRING [victim] [type] [string]
This will allow one mob to string the name, short or long

description of another mob or itself. Use ‘name’, ‘short’,
‘long’ or ‘desc’ for type. Use ‘format’ as the string for
‘desc’ to format it after setting.

Syntax: MOB CLONE [victim] [target]
This will allow one mob to clone itself as though it were another

mob or player. This will set the mob’s stats and such as close to

the ‘victim’ as possible. Victim is the character to be cloned

while target is who the new stats will be set on. Target is an

optional value and when blank will target the mob that is using

the command itself.

Syntax: MOB AUTO [level] [difficulty] [set|#]
This will allow a mob to set its values along the calculations

as a builder using autoset, autoeasy, or autohard. The ‘level’

parameter can be derived in three ways: $* value will use the

level of the specified victim, an actual numerical value may be

used, or a variable may be supplied. The difficulty parameter

is easy, normal, or hard, and works in the same way as autoset

in medit does. Lastly, the set value is optional, and if ‘set’

is supplied as the argument, the mob will be set to the same level

value calculated by the ‘level’ value, or if a numerical value is

supplied, it will be set to that value.

Syntax: MOB REVIVE [victim|’all’] [full]
This will allow a mob to bring a player back to life, or all

players within a given room. The last parameter full (or the word
‘yes’) can be supplied to make the revive be a ‘full’ revive with

corpse and item restoration.

Syntax: MOB BLOCK [victim]

 This will allow a mob to block the next single action by a player.

This is particularly useful when combined with the ‘move’ trigger

in order to create an ‘exall’ type affect with more ease if some

conditions will allow the player to pass.

Syntax: MOB DESC [set/format/reset] [string]

The first argument determines what the function does. Using ‘set’

will allow the mob to set the room’s description to the ‘string’

provided. Using ‘format’ will format whatever description is

currently set, while the string argument is ignored in this case.

Using reset will put the description back to what it was

originally. Normal room resets will also put the description as it

was.

Syntax: MOB NIGHTDESC [set/format/reset] [string]

The first argument determines what the function does. Using ‘set’

will allow the mob to set the room’s description to the ‘string’

provided. Using ‘format’ will format whatever night description is

currently set, while the string argument is ignored in this case.

Using reset will put the night description back to what it was

originally. Normal room resets will also put the night description

as it was.

Syntax: MOB EXIT [dir] [flag|vnum]

This will allow a mob to TOGGLE the exit flag of any specific exit.

The exit flag can be toggled back to the way it was, and upon a

room reset the original exit flags will be reset. If a vnum is

supplied instead of a flag, it will temporarily change the vnum

that the exit is linked to.

Syntax: MOB ROOM [flag]
This will allow a mob to TOGGLE the room flag of the room it is in.

The room flag can be toggled back to the way it was, and upon a

room reset the original room flags will be reset.

Syntax: MOB RESET [area]

This will force a reset on the room the mobile is in. The area

argument is optional and if supplied will reset the entire area.

Syntax: MOB LOOKDESC [string]

This is only to be used in combination with the LOOK trigger. It
creates a temporary description that will supply to the player when
successfully triggered.

Syntax: MOB MAKEPET [victim] [target]
This will make the target a pet of victim as per the pet system.

This will fail if the player is already at their pet maximum. It

may be best to use the if check ‘maxpets’ before trying this.

Syntax: MOB ADDCOMP [victim] [vnum] [level]
This will add a companion to the player of the specified vnum. The

level parameter is optional, and if set, will make the companion

the specified level. A number or a variable may be used. This

follows normal companion limits, so the ‘maxcomp’ if check is

recommend to be used.

Syntax: MOB REMCOMP [victim] [vnum]
This will remove a companion of the specified vnum from the player.

This will also purge the companion from the game, unless the

companion is also the mob itself.

Syntax: MOB ADDSPEC [victim] [spec_fun]
This will add to or change the spec_fun on a mob or player. If the

mob is a companion and the new spec_fun isn’t a class based one,

this will remove the mob’s compdata, making it no longer a valid

companion.

Syntax: MOB REMSPEC [victim]
This will remove any spec_fun from a mob or player. If the mob is

a companion, this will remove the mob’s compdata, making it no

longer a valid companion.

Syntax: MOB WAKE [victim]

This will force the victim to wake up, regardless of sleep affects.

Syntax: MOB RESTORE [victim|room]
This will do a full restore on a target or the room. Leaving the

argument blank will default to room.

Syntax: MOB PUSH <victim|all> [exclude]
This will push players out of the room in a random direction. If

all is supplied then the optional exclude parameter is ignored, and

all players and NPCs will be pushed out of the room (other than the

mob who initiated or the mob/character holding the object that

caused it). If a victim is supplied and exclude is not yet, it

will push only that character out of the room. If a victim is

supplied and exclude is set, it will push everyone except for the

target out of the room.

If an exit is jump/crawl/climb, then it will force a

jump/crawl/climb on the moving target. If the exit a closed door

that isn't trapped or locked, it will open the door, push the

player through, and then reclose the door.

Syntax: MOB HOLD [victim] [timer]

This will allow a mob to basically freeze a player or another mob

in place for an amount of time equal to the timer. The timer is

based on the delay command timer. This is predominately intended

to be used in conjunction with the delay commands, so if a mob is

using the delay and it's important for the player to be there until

the delay finishes, this can be used to ensure that. PLEASE keep

use of this to a minimum, and when used, try to keep the delays and

holds to a pretty low number. Long stretches of time forced to

remain in the same spot can be annoying, and let's try not to annoy

people with this.
An example prog:

mob hold $n 10

say Hi!

delay 2 say You are $n!

delay 4 say Yeah, you can't move!

delay 6 say At least...

delay 7 say not...

delay 8 say until...

delay 9 say now!
OR setting the hold to "0" will clear the hold information:
mob hold $n 10

say Hi!

delay 2 say You are $n!

delay 4 say Yeah, you can't move!

delay 6 say At least...

delay 7 say not until now!

delay 7 mob hold $n 0
Note that when a player is held, they may not move via movement

commands, spells like gate/nexus/summon/word of recall will fail,

they can't be transferred by immortals, rooms, objects and mobs

(unless by the mob that initiated the hold). Also note that other

mobs cannot modify the hold or the hold timer, except for the mob

that initiated it.

Syntax: MOB PRIORITY [victim] [+|-] [amount]

This will adjust the victim’s priority value as per the mob.

RESET may be used in place of the values after victim to clear it.

Syntax: MOB SKILL [spell name] [victim] [level]

This will allow a mob to instant cast a spell at a specific level.

Syntax: MOB WMAP [victim|all] [vnum] [size]
NOT IN USE! Old world map system, would echo the world map view to
the player based on the vnum specified and the size listed.

Syntax: MOB STAGGER [victim] [# of seconds]
Will add or induce stagger on the victim.

Syntax: MOB OLMAP [victim|all] [map#|ch] [x|ch] [y|ch] [symbols?]
Displays the world map view to victim (or all) according to the
coordinates specified. The string “ch” may be supplied in place of
numbers to substitute the victim’s map values. The symbols value
may be “false” or “no” to disallow the display of world map custom
symbols. Blank or any other value will default to true.

Syntax: MOB REMAFF [victim] [affect|all]
Will strip a character of a specified affect or all.

Syntax: MOB REPEAT [victim]
For use with the alias trigger, it repeats the command otherwise
blocked by the alias trigger but ignores the prog and allows it to
fire normally. This allows conditional use of the alias trigger.
If a player attempts to do a command that would fire differently
based on a variable or some other condition, the command would
otherwise fail if the conditions aren’t met. By using ‘repeat’
outside of the conditions, the command may still fire as normal
when the conditions aren’t met.

Syntax: MOB SLAY [victim] [character]
Will instantly kill the victim, attributing the kill to the
character specified. If none is listed, it grants it to the mob.

Syntax: MOB LOADAGF [vnum]
Will load a Guardian Force as if it just appeared in combat. If
vnum is supplied, it loads a specific one, if not, this is PC only
as it loads from the player itself.

Syntax: MOB SAVE
Saves the area the mob is in, as per OLC ‘asave area’.

Syntax: MOB INFO [string]
Sends an “info” message to the game

Syntax: MOB DEST [victim] [x] [y]

 MOB DEST [victim] backtrack [true|false]
Sets a mob to travel toward a specified destination on the world
map. Backtrack determines whether a mob will travel back to its
original destination after reaching the first destination.

Syntax: MOB WMTRANS [victim|all] [map name] [x] [y]
Transfers victim (or all) to the specified map at the specified
coordinates.

Syntax: MOB WMGTRANS [victim] [map name] [x] [y]
Transfers victim and group to the specified map at the specified
coordinates.

Syntax: MOB GENOBJ [victim] [item type] [level] [wear] [shop]
Generates a random object of the specified type and level. If wear
is set to TRUE then it will equipment the mob when its loaded. If
shop is set to TRUE it will generate higher quality items.

Syntax: MOB TOGAIRV [type] [class] [thing]
Adds (or removes if present) an AIRV. Valid types are: absorb,
immunity, resistance, or vulnerability. Class is: material,
damtype, or wclass. Thing is the material, damtype, or weapon
class itself.

Syntax: MOB SETCARD [victim] [card] [+/-/amount] [amount]
Will directly set, add, or subtract Triple Triad cards from a
player.

Syntax: MOB SETQUEST [victim] [add|remove> [variable name]

Adds or removes an entry for the quest that uses the given variable
to the player’s journal.
Syntax: MOB QTRACKER [victim] [string]
Sends the target a custom quest tracker update if the tracker isn’t
silenced. Use this to replace the tracker for pages that have been
marked silent.

Syntax: MOB ADDMPROG [victim] [vnum] [trigger] [phrase]
Will add an mprog to the current “instance” of specified mob.

Syntax: MOB DELMPROG [victim] [vnum]
Will delete an mprog from the current “instance” of the specified
mob.

Syntax: MOB ADDOPROG [victim] [vnum] [trigger] [phrase]
Will add an oprog to the current “instance” of specified obj.

Syntax: MOB DELMPROG [victim] [vnum]
Will delete an oprog from the current “instance” of the specified
obj.

Syntax: !MOB ADDPCPROG [victim] [vnum] [trigger] [phrase]
Will add a PC prog to PC victim.

Syntax: !MOB DELPCPROG [victim] [vnum]
Will delete a PC prog from PC victim.

Syntax: !MOB ADDRESET [number] [mob|obj] [vnum] [location]
Adds a reset to the room, following the same command structure as
OLC.

Syntax: !MOB DELRESET [number] [mob|obj]
Deletes a specified reset. The number supplied may be a vnum or
the number of the reset itself, as per OLC. Highly advised to only
ever use the vnum in this instance.

Syntax: !MOB SETALIGN [victim] [value]

This command will allow the mob to change a player’s alignment.

value must be between -1000 and 1000.

Syntax: !MOB ADDALIGN [victim] [value]

This command will allow the mob to change a player’s alignment.

Syntax: !MOB SUBALIGN [victim] [value]

This command will allow the mob to change a player’s alignment.

Syntax: !MOB SETSP [victim] [value]
This will set a person’s storypoint variable to the value specified.

Syntax: !MOB ADDSP [victim] [command]
This will add a specified amount from the victim’s storypoint value.

Syntax: !MOB SUBSP [victim] [command]
This will subtract a specified amount from the victim’s storypoint value.

Syntax: !MOB SFKAR [victim] [good/evil/neutral]
This will promote to their 1st promotion class someone based on their alignment.
Syntax: !MOB PFKAR [victim] [good/evil/neutral]
This will promote to their 2nd promotion class someone based on their alignment.

Syntax: !MOB REMGF [victim] [vnum]

MOB REMGF will remove a Guardian Force of the specified vnum from the victim. It would be best, before attempting to remove a GF, to have a check for that first in the program.

Syntax: !MOB SSET [victim] [value1] [value2]
Value1 is the skill to set, while value2 is the skill percentage

to set. ie: mob sset $n sword 100

Syntax: !MOB STATBONUS [victim] [stat] [amount]
This will only work if the mob from an area with security of 4 or higher. It will bonus a stat (pwr, vit, agi, wil, ap) by the specified number.

Syntax: !MOB ADDMERIT [victim] [merit]
This will only work if the mob from an area with security of 4 or higher. It will add the specified merit to the player.

Syntax: !MOB REMMERIT [victim] [merit]
This will only work if the mob from an area with security of 4 or higher. It will remove the specified merit from the player.

Syntax: !MOB ADDFLAW [victim] [merit]
This will only work if the mob from an area with security of 4 or higher. It will add the specified flaw to the player.

Syntax: !MOB REMFLAW [victim] [merit]
This will only work if the mob from an area with security of 4 or higher. It will remove the specified flaw from the player.

Syntax: !MOB LOG [string]
This will send a logged, wiznet string to the game/logs w/ a

timestamp.

Syntax: !MOB MAPRELOAD
As per OLC mapedit overworld stuff, it reloads the map that the map
is on.

Syntax: MOB DIALOGUE [victim] [value1] [value2]
Value1 is the mob’s dialogue stage, while value2 is the Dialogue ID

itself. Ie: ‘mob dialogue $n 1 5’ will set the 6th dialogue to

its 1st stage. Dialogues range from 0-24. Note that value2 is

optional as when it is not present, it defaults to Dialogue ID 0.

NOTE: This is an old, mostly unused system. Using the variable
system instead is highly recommended.

Syntax: MOB DIALOGUE [victim] [clear]
This will reset a mob’s dialogue for the victim.

Syntax: MOB ADDGUILD [victim] [clan]
Adds a PC to a specified guild if they aren't already in one of

that type.

Syntax: MOB REMGUILD [victim] [clan]
Removes a PC from a specified guild.

Syntax: MOB PROMOTE [victim] [clan]
Increases the rank of a PC in the specified clan.

Syntax: MOB DEMOTE [victim] [clan]
Decreases the rank of a PC in the specified clan.

Syntax: MOB SETRANK [victim] [clan] [rank]
Sets the rank of a PC in the specified clan.

Syntax: MOB SETDIV [victim] [clan] [divsion]
Sets the division of a PC in the specified clan.

Syntax: MOB SETREP [victim] [faction] [value]
Adds or subtracts victim's faction reputation. Faction argument
may be name of faction, or 'here' / 'region' for area the victim is

in.

Syntax: VAR [victim] [var_name] [+, -, *, /, =] [values]
This will set and manipulate values on players. The appropriate

values are the var_name itself, any number, or the following

character values: hp, maxhp, mp, maxmp, defense, mdefense, hitroll,

level, damroll, power/pwr, vitality/vit, willpower/wil,

agility/agi, attack, speed, castlevel, crit (for crit rate),

castcap, evade, room (vnum that victim is in), elem1 or elem2 for
innate elements. Additionally, you may use rand <high> <low> to
choose randomly between a number
range. You may also use
variables (which you need to first assign
in your prog) as
min/max damage for 'mob damage'. You may also
‘skill <skillname>’
to assign the percentage of the specified skill
to the
variable.

Special variables:

norecall – will make a character unable to recall
Syntax: VAR [victim] [var_name] persist
This will cause the variable to save on the player or mob to erase

it, make it equal 0.

NOTE: Immortals may use the variable command for various things.

Also, ‘variable [victim] dump’ will show a player’s variables.

On persisting a variable on NPCs:

-Each time a variable is set to persist, it automatically saves the

entire area.

-Each time a variable that is already set to persist is modified or

cleared, it automatically saves the entire area.

-When a variable is persisted/saved on a mob, it actually writes to

the area file itself, just like if you were making some other OLC

change to the area.

-Just like with players, once a variable is set to persist, it will

only ever change or clear based on an immortal or a Prog setting it

to.
Because of the previous list, it is advised to use this as

sparingly as possible and if you want the variable to reset or

clear at any point after setting it to persist, you HAVE to plan

for that and have a prog setup to do this, otherwise it is a

PERMANENT change to the area file and will remain that way unless

you have a prog run to change/clear the variable or you do it

manually (if you have the proper security access to those

commands).
It is also important to only persist a variable on a mob that will

only ever have ONE instance of the mob loaded at a time. Any mob

that you intend to run more than once instance of simultaenously,

either through loaded commands or through room resets that spawn

multiple versions of the same individual mobile vnum, DO NOT set a

variable to persist on these mobs.

Syntax: VAR [victim] [var_name] [timer/level] [value]

These values will denote a variable to expire after a certain

number of ticks or once they reach/surpass a specified level.

Syntax: VARCPY [victim] [var_name1] [var_name2]
This will create a new variable [var_name2] on the mob having

copied the value of another variable [var_name1] on the specified

target.

Syntax: VARPOS [victim] [var_name] [+, -, *, /, =] [position] [value]
This will set and manipulate single digit of a value of a variable.

The position value determines what digit in the number will be

modified. For example, a position value of 3 will modify the 3rd
digit of a numerical string. The value is the number by which the

specified digit will be modified.

Example: varpos $n testvar = 3 5

This will change the 3rd digit of the var testvar to the number 5.

Note that the total value of the modification cannot be over 9,

as it has to be a single digit.

NOTE: This is useful in tracking multiple values within one

variable rather than having to use multiple variables. This was

specifically added for treasure chest tracking, as each digit in

a 10 digit numerical string corresponds to a specific chest

somewhere in the world. If the variable on the player in that

particular digit equals 0, then the chest has not been opened, but

if it equals 1, then it has.

Syntax: MOB SHOWVAR [number] [value]

 MOB SHOWVAR [number] [victim] [variable]

Creates “tokens” that programs can use to store, track, and use in
other ways. The tokens are usable in the form of $1, $2 through
$9.

Using ‘mob showvar 1 100’ will set $1 to 100.

Using ‘mob showvar 6 $n tmpvar’ will set $6 to whatever $n’s tmpvar
variable value is.
Syntax: MOB SHOWVTIMER [number] [value]

 MOB SHOWVTIMER [number] [victim] [variable]
A variation of showvar, it sets the token to the value of the
variable’s timer, if present.
4. OBJCOMMANDS

OBJcommands are special commands that allow objects to perform

immortal-like actions within an OBJprogram (transferring players or

loading items, for example). Most OBJcommands them are wiz commands which

have been changed to allow for objects to perform the commands. In this

version of Programs, players have been prevented from using these

commands by adding a separate interpreter for OBJcommands. This also

speeds up (in most cases) MOBJprogram execution when OBJcommands are

used. All OBJcommands are preceded with the word 'OBJ' on the command

line.

NOTE that some commands are restricted to areas with higher security. Those are grouped together and preceded in this list by an exclamation mark (!).

Syntax: OBJ AECHO [range] [string]
 OBJ ZECHO [string]
 OBJ WECHO [string]
 OBJ GECHO [string]

AECHO prints the string to all players within a specified

range. If range of 0 is specified, it defaults to the same range

as the yell command. ZECHO prints the string to all players in the

same area with the object. WECHO prints the string to all players

in the same world with the object. GECHO prints the string to all

players in the game.

Syntax: OBJ ECHO [string]

 OBJ ECHOAT [victim] [string]

 OBJ ECHOAROUND [victim] [string]

ECHO displays the string to everyone in the room. ECHOAT displays

the string to the victim only. ECHOAROUND displays the string to

everyone except the victim.

The three options let you tailor the message to goto victims or do

Other sneaky stuff.

Syntax: OBJ MLOAD [vnum]

 OBJ OLOAD [vnum] [level]

 OBJ VOLOAD [vnum] [victim] {'inventory'|'wear'}

 OBJ OIOLOAD [vnum] [level]
 MLOAD creates a mobile and places it in the same room with the

object. OLOAD loads the object into the room. OIOLOAD works only

if the original object is a container, and if so, it will load the

new object into the original object.

VOLOAD loads the new object into either the inventory or wear slot

of a specified victim.

Syntax: OBJ REMOVE [victim] [vnum|'all']

Lets the object strip an object of given vnum from the victim.

Objects removed are destroyed. If the vnum is replaced with "all",

the whole inventory of the victim is destroyed.

Syntax: OBJ PURGE [argument]

Destroys the argument from the room of the object. Without an

Argument the result is the cleansing of all NPC's and items from

the room with the exception of the object itself. However, mppurge

$i will indeed purge the object, but it MUST be the last command

the object tries to do, otherwise the mud cant reference the acting

object trying to do the
commands and bad things happen.

NOTE: Rather than having the object purge themselves, have the obj

do this: ‘obj goto 8’ There is a purgemaster in that room

specifically designed for that task.

Syntax: OBJ GOTO [location]

Moves the object to the room or mobile or object requested. It

makes
no message of its departure or of its entrance, so these must

be supplied with echo commands if they are desired.

Syntax: OBJ TRANSFER [victim|'all'] [location] <silent>

 OBJ GTRANSFER [victim] [location] <silent>

 OBJ OTRANSFER [object|’all’] [location]

Sends the victim to the destination or to the room of the object as

a default. if the victim is "all" then all the characters in the

Room of the object are transferred to the destination. Good for

Starting quests or things like that. Gtransfer works like
transfer, except that the group the victim belongs to is
transferred with the victim. Otransfer transfers an object in the
room. The silent parameter is optional, and will do a transfer
without the forced ‘look’. The word ‘link’ can be used in place of
location if the object is linked with another.

Syntax: OBJ FORCE [victim|'all'] [command]

 OBJ GFORCE [victim] [command]

 OBJ VFORCE [vnum] [command]

Forces the victim to do the designated command. The victim is not

Told that they are forced, they just do the command so usually some

Opecho message is nice. You can force players to remove belongings

and drop them, etc. The player sees the normal command messages

(such as removing the item and dropping it in the above example)

Again, if the victim is "all" then everyone in the object's room

does the command. Gforce works like force except that it affects

the group the victim belongs to. Vforce affects all mobiles with

given vnum in the game world. This is useful for, for example,

purging certain type of NPCs from the game (by forcing them to

purge themselves).

Syntax: OBJ DAMAGE [victim|'all'] [min] [max] {lethal}

Causes unconditional damage to the victim. Specifying "all" as

victim causes damage to all characters in the room.

Min and max parameters define the minimum and maximum amounts of

damage caused. By default, the damage is non-lethal, but by

supplying the optional 'lethal' parameter, the damage can kill the

victim. This command is silent, you must echo all messages yourself

in the program.

Syntax: OBJ ELEMDAM [victim|'all'] [damage] [element] [type]

Causes unconditional damage to the victim. Specifying "all" as

victim causes damage to all characters in the room except the

mobile. Unlike mob damage, when you specify the damage, it is

run through a randomization that will increase or decrease the

damage by 20%. Element may be specified to be one of the following

choices: black, green, red, white, yellow, blue, shadow, gravity,

magma, photon, lightning, blizzard, vampiric, same, opposite,
random or none. Type may be specified as bash, pierce, slash (all
three of which are physical attacks), magical or random. The
element and type specified will determine how damage is calculated
and soaked based on the defense of the victim.
Syntax: OBJ MDAMAGE [victim|'all'] [min] [max]

Causes unconditional mana damage to the victim. Specifying "all" as

victim causes damage to all characters in the room except the

mobile. Min and max parameters define the minimum and maximum

amounts of damage caused.

Syntax: OBJ DELAY

 OBJ CANCEL

OBJ DELAY sets the time in PULSE_TICK after which the object's

delay trigger is activated. If the object has a program defined

for delay trigger, the program is executed when the timer expires.

OBJ CANCEL resets the delay timer.

Syntax: OBJ REMEMBER [victim]

 OBJ FORGET

This command enables the object to remember a player for future

reference in a OBJprogram. The player can subsequently be referred

as '$q' in programs activated by the object. OBJ FORGET clears

the target. Note that if the first time the object runs a program,

$q is automatically set to the player who triggered the event.

Most commonly this command is used in delayed programs, where the

object has to remember the player who triggered the original

event.

Syntax: OBJ CALL [vnum] {victim} {target1} {target2}

This command lets you call OBJprograms from within a running one,

i.e. to call a OBJprogram subroutine. The first parameter is the

vnum of the program to execute, the second is the victim's name

(for example $n), and the third and fourth are optional object

names. All other parameters except vnum can be replaced with

word 'null' indicating ignored parameter.

OBJprograms can be called recursively, but as a safety measure,

parser allows only 5 recursions.

Syntax: OBJ ATTRIB [target] [level] [condition] [v0] [v1] [v2] [v3] [v4]

This command will change the object's stats to those specified.

The target argument is the character who's level you want to

compare, each other argument corresponds to the object stat with

that name. All arguments must be included, see following list for

details on argument options.

Target may be a $ code or if you put "worn" as the argument, it

Will target the character that is wearing the object.

Each of the other arguments must be an integer value, if you want

To compare against the target's level, at an operator (+,-,*,/)

Just before the number with no space.

EXAMPLE:

 obj attrib worn 20 *3 /2 +5 -14 8 8

In this case the target will be the character wearing the object.

The object's level will be set to 20,

object's condition will be set to the target's level * 3,

object's v0 will be set to the target's level / 2,

object's v1 will be set to the target's level + 5,

object's v2 will be set to the target's level -14,

objects v3 and v4 will both be set to 8

Syntax: OBJ SHIFT [color]
OBJ SHIFT will push the elemental field of the room toward a specified color. If no color is specified, the color will default to one of two things: 1) If the object is worn or carried, it will default to the innate element of the character with the item, 2) If the object isn’t being carried, it will select a random element. RANDOM may be supplied as a color randomize the color.

Syntax: OBJ CAST [spell] [level] [victim]

This command will allow the object in question to cast a spell on a

specified victim at a specified spell level. The object must be on

a character in order for this to work, as it casts the spell

through the character itself, similar to wands, scrolls, etc.

Syntax: OBJ LOCK [direction]
This is designed to allow objs to lock doors without the

required key and to do so silently. It will also automatically

close the door to lock it if necessary.

Syntax: OBJ UNLOCK [direction] open
This is designed to allow objs to unlock doors without the

required key and to do so silently. If the ‘open’ value is

supplied, the obj will automatically and silently open the door.

Syntax: OBJ ADDKEY [victim] [vnum]
Adds an item with the word ‘keyitem’ somewhere in it’s name

value to the player’s list of key items.

Syntax: OBJ REMKEY [victim] [vnum]
Removes an item from the player’s list of key items.

Syntax: OBJ BONUS [victim] [value]
This will bonus a player the amount of exp as specified by value.
Syntax: OBJ ADDGIL [victim] [value]
This will bonus a player the amount of gil as specified by value.

Negative values may be supplied to penalize gil as well.

Syntax: OBJ FOOD [victim] [full|drunk] [amount]
In conjunction with the alias trigger, this can allow custom food

affects supplying the victim argument followed by either affecting

the victim’s full or drunk value by the amount specified.
Syntax: OBJ STRING [type] [string]
This will allow an obj to string the name, short or long

description of itself. Use ‘name’, ‘short’ or ‘long’ for type.

Syntax: OBJ AUTO [level] [set] [normal/shop/quest] [class/standard]
This will allow an object to set its values in a manner similar

to autoarmor or autoweapon based on a specified level. The level

value has three options that can be used here. You may supply the

value ‘ch’ to have the level the values are based on be based on

the character that the object is on at the time, you may specify a

number for the level, or you may use a variable for the number.

The second value is optional and will modify the level of the

object itself after the values have all been set. Using the value
‘set’ will set the object to whatever level was used as the value

For level, using the value ‘ch’ will set it to the level of the

character holding the object, while supplying a number will set the

object to that level. This only works on armor and weapons, and

when used on weapons it will clear out any addaffects.

Syntax: OBJ REVIVE [victim|’all’] [full]
This will allow an object to bring a player back to life, or all

players within a given room. The last parameter full (or the word
‘yes’) can be supplied to make the revive be a ‘full’ revive with

corpse and item restoration.

Syntax: OBJ BLOCK [victim]

This will allow an object to block the next single action by a

player. This is particularly useful when combined with the ‘move’

trigger in order to create an ‘exall’ type affect with more ease if

some conditions will allow the player to pass.

Syntax: OBJ DESC [set/format/reset] [string]

The first argument determines what the function does. Using ‘set’

will allow the mob to set the room’s description to the ‘string’

provided. Using ‘format’ will format whatever description is

currently set, while the string argument is ignored in this case.

Using reset will put the description back to what it was

originally. Normal room resets will also put the description as it

was.

Syntax: OBJ NIGHTDESC [set/format/reset] [string]

The first argument determines what the function does. Using ‘set’

will allow the mob to set the room’s description to the ‘string’

provided. Using ‘format’ will format whatever night description is

currently set, while the string argument is ignored in this case.

Using reset will put the night description back to what it was

originally. Normal room resets will also put the night description

as it was.

Syntax: OBJ EXIT [dir] [flag|vnum]
This will allow an obj to TOGGLE the exit flag of any specific

exit. The exit flag can be toggled back to the way it was, and

upon a room reset the original exit flags will be reset. If a vnum

is supplied instead of a flag, it will temporarily change the vnum

that the exit is linked to.

Syntax: OBJ ROOM [flag]
This will allow a mob to TOGGLE the room flag of the room it is in.

The room flag can be toggled back to the way it was, and upon a

room reset the original room flags will be reset.

Syntax: OBJ SECTOR [flag]
This will allow the obj to toggle the sector flag of the room.

Syntax: OBJ SYMBOL [flag]
This will allow the obj to toggle the world map symbol of the room.

Syntax: OBJ RESET [area]

This will force a reset on the room the obj is in. The area

argument is optional and if supplied will reset the entire area.

Syntax: OBJ LOOKDESC [string]

This is only to be used in combination with the LOOK trigger. It
creates a temporary description that will supply to the player when
successfully triggered.

Syntax: OBJ MAKEPET [victim] [target]
This will make the target a pet of victim as per the pet system.

This will fail if the player is already at their pet maximum. It

may be best to use the if check ‘maxpets’ before trying this.

Syntax: OBJ ADDCOMP [victim] [vnum] [level]
This will add a companion to the player of the specified vnum. The

level parameter is optional, and if set, will make the companion

the specified level. A number or a variable may be used. This

follows normal companion limits, so the ‘maxcomp’ if check is

recommend to be used.

Syntax: OBJ REMCOMP [victim] [vnum]
This will remove a companion of the specified vnum from the player.

Syntax: OBJ ADDSPEC [victim] [spec_fun]
This will add to or change the spec_fun on a mob or player. If the

mob is a companion and the new spec_fun isn’t a class based one,

this will remove the mob’s compdata, making it no longer a valid

companion.

Syntax: OBJ REMSPEC [victim]
This will remove any spec_fun from a mob or player. If the mob is

a companion, this will remove the mob’s compdata, making it no

longer a valid companion.

Syntax: OBJ MOVE [DIR]

This will cause an object that is in the room (not being held,

carried, or worn) to remove itself from the current room and place

itself in the room specified by direction. This will work over

special exits such as crawl/jump/climb, but will not pass through

doors or into sectors that a player normally can’t pass over. It

would be best in progs using this to use the ‘passable’ check to

make sure that the exit is there and not closed or otherwise not

passable.

Syntax: OBJ WAKE [victim]

This will force the victim to wake up, regardless of sleep effects.

Syntax: OBJ WAIT {victim} {# of pulses}

This command will cause the victim a certain amount of wait state,

based upon the number of which is set. This number is the number

bf pulses. There are 4 pulses per second, thus there are 240

pulses per tick. 1 tick = 1 minute.

Syntax: OBJ PUSH <victim|all> [exclude]

This will push players out of the room in a random direction. If

all is supplied then the optional exclude parameter is ignored, and

all players and NPCs will be pushed out of the room (other than the

mob who initiated or the mob/character holding the object that

caused it). If a victim is supplied and exclude is not yet, it

will push only that character out of the room. If a victim is

supplied and exclude is set, it will push everyone except for the

target out of the room.

If an exit is jump/crawl/climb, then it will force a

jump/crawl/climb on the moving target. If the exit a closed door

that isn't trapped or locked, it will open the door, push the

player through, and then reclose the door.

Syntax: OBJ REQUIP
This will re-equip an item. Mostly useful if the wear slot or

handedness of an item changes.

Syntax: OBJ VALUE4 [flag]
This will toggle a weapon's “value 4”, because obj attr is very

unfriendly.

Syntax: OBJ WMAP [victim|all] [vnum] [size]
NOT IN USE! Old world map system, would echo the world map view to
the player based on the vnum specified and the size listed.

Syntax: OBJ STAGGER [victim] [# of seconds]
Will add or induce stagger on the victim.

Syntax: OBJ OLMAP [victim|all] [map#|ch] [x|ch] [y|ch] [symbols?]
Displays the world map view to victim (or all) according to the
coordinates specified. The string “ch” may be supplied in place of
numbers to substitute the victim’s map values. The symbols value
may be “false” or “no” to disallow the display of world map custom
symbols. Blank or any other value will default to true.

Syntax: OBJ REMAFF [victim] [affect|all]
Will strip a character of a specified affect or all.

Syntax: OBJ REPEAT [victim]
For use with the alias trigger, it repeats the command otherwise
blocked by the alias trigger but ignores the prog and allows it to
fire normally. This allows conditional use of the alias trigger.
If a player attempts to do a command that would fire differently
based on a variable or some other condition, the command would
otherwise fail if the conditions aren’t met. By using ‘repeat’
outside of the conditions, the command may still fire as normal
when the conditions aren’t met.

Syntax: OBJ SLAY [victim] [character]
Will instantly kill the victim, attributing the kill to the
character specified.

Syntax: OBJ LOADAGF [vnum]
Will load a Guardian Force as if it just appeared in combat. If
vnum is supplied, it loads a specific one, if not, this is PC only
as it loads from the player itself who has the obj.

Syntax: OBJ SETCARD [victim] [card] [+/-/amount] [amount]
Will directly set, add, or subtract Triple Triad cards from a
player.

Syntax: OBJ SETQUEST [victim] [add|remove> [variable name]

Adds or removes an entry for the quest that uses the given variable
to the player’s journal.
Syntax: OBJ QTRACKER [victim] [string]
Sends the target a custom quest tracker update if the tracker isn’t
silenced. Use this to replace the tracker for pages that have been
marked silent.

Syntax: OBJ ADDMPROG [victim] [vnum] [trigger] [phrase]
Will add an mprog to the current “instance” of specified mob.

Syntax: OBJ DELMPROG [victim] [vnum]
Will delete an mprog from the current “instance” of the specified
mob.

Syntax: OBJ ADDOPROG [victim] [vnum] [trigger] [phrase]
Will add an oprog to the current “instance” of obj itself.

Syntax: OBJ DELMPROG [victim] [vnum]
Will delete an oprog from the current “instance” of obj itself.

Syntax: !OBJ ADDPCPROG [victim] [vnum] [trigger] [phrase]
Will add a PC prog to PC victim.

Syntax: !OBJ DELPCPROG [victim] [vnum]
Will delete a PC prog from PC victim.

Syntax: !OBJ STATBONUS [victim] [stat] [amount]
This will only work if the obj is from an area with security of 4 or higher. It will bonus a stat (pwr, vit, agi, wil, ap) by the specified number.

Syntax: !OBJ ADDRESET [number] [mob|obj] [vnum] [location]
Adds a reset to the room, following the same command structure as
OLC.

Syntax: !OBJ DELRESET [number] [mob|obj]
Deletes a specified reset. The number supplied may be a vnum or
the number of the reset itself, as per OLC. Highly advised to only
ever use the vnum in this instance.

Syntax: !OBJ SFKAR [victim] [good/evil/neutral]
This will promote to their 1st promotion class someone based on their alignment.

Syntax: OBJ ADDGUILD [victim] [clan]
Adds a PC to a specified guild if they aren't already in one of

that type.

Syntax: OBJ REMGUILD [victim] [clan]
Removes a PC from a specified guild.

Syntax: OBJ PROMOTE [victim] [clan]
Increases the rank of a PC in the specified clan.

Syntax: OBJ DEMOTE [victim] [clan]
Decreases the rank of a PC in the specified clan.

Syntax: OBJ SETRANK [victim] [clan] [rank]
Sets the rank of a PC in the specified clan.

Syntax: OBJ SETDIV [victim] [clan] [divsion]
Sets the division of a PC in the specified clan.

Syntax: OBJ SETREP [victim] [faction] [value]
Adds or subtracts victim's faction reputation. Faction argument
may be name of faction, or 'here' / 'region' for area the victim is

in.

Syntax: OBJ VAR [victim] [var_name] [+, -, *, /, =] [values]
This will set and manipulate values on players. The appropriate

values are the var_name itself, any number, or the following

character values: hp, maxhp, mp, maxmp, defense, mdefense, hitroll,

level, damroll, power/pwr, vitality/vit, willpower/wil,

agility/agi, attack, speed, castlevel, crit (for crit rate),

castcap, evade, room (vnum that victim is in), elem1 or elem2 for
innate elements. Additionally, you may use rand <high> <low> to
choose randomly between a number
range. You may also use
variables (which you need to first assign
in your prog) as
min/max damage for 'mob damage'. You may also
‘skill <skillname>’
to assign the percentage of the specified skill
to the
variable.

Special variables:
norecall – will make a character unable to recall
Syntax: OBJ VAR [victim] [var_name] persist
This will cause the variable to save on the player To erase it,

make it equal 0.

NOTE: Immortals may use the variable command for various things.

Also, ‘variable [victim] dump’ will show a player’s variables.

Syntax: OBJ VAR [victim] [var_name] [timer/level] [value]

These values will denote a variable to expire after a certain

number of ticks or once they reach/surpass a specified level.

Syntax: OBJ VARPOS [victim] [var_name] [+, -, *, /, =] [pos] [value]
This will set and manipulate single digit of a value of a variable.

The position value determines what digit in the number will be

modified. For example, a position value of 3 will modify the 3rd
digit of a numerical string. The value is the number by which the

specified digit will be modified.

Example: varpos $n testvar = 3 5

This will change the 3rd digit of the var testvar to the number 5.

Note that the total value of the modification cannot be over 9,

as it has to be a single digit.

NOTE: This is useful in tracking multiple values within one

variable rather than having to use multiple variables. This was

specifically added for treasure chest tracking, as each digit in

a 10 digit numerical string corresponds to a specific chest

somewhere in the world. If the variable on the player in that

particular digit equals 0, then the chest has not been opened, but

if it equals 1, then it has.

Syntax: OBJ SHOWVAR [number] [value]

 OBJ SHOWVAR [number] [victim] [variable]

Creates “tokens” that programs can use to store, track, and use in
other ways. The tokens are usable in the form of $1, $2 through
$9.

Using ‘obJ showvar 1 100’ will set $1 to 100.

Using ‘obJ showvar 6 $n tmpvar’ will set $6 to whatever $n’s tmpvar
variable value is.
Syntax: OBJ SHOWVTIMER [number] [value]

 OBJ SHOWVTIMER [number] [victim] [variable]
A variation of showvar, it sets the token to the value of the
variable’s timer, if present.
5. ROOMCOMMANDS

ROOMcommands are special commands that allow rooms to perform

immortal-like actions within a ROOMprogram (transferring players or

loading items, for example). Most ROOMcommands them are wiz commands

which have been changed to allow for rooms to perform the commands. In

this version of Programs, players have been prevented from using these

commands by adding a separate interpreter for ROOMcommands. This also

speeds up (in most cases)

ROOMprogram execution when ROOMcommands are used. All ROOMcommands are

preceded with the word 'ROOM' on the command line.

NOTE that some commands are restricted to areas with higher security. Those are grouped together and preceded in this list by an exclamation mark (!).

Syntax: ROOM ASOUND [string]

 ROOM AECHO [range] [string]

 ROOM ZECHO [string]

 ROOM WECHO [string]

 ROOM GECHO [string]

ASOUND prints the text string to the rooms around the room in the

same manner as a death cry.

AECHO prints the string to all players within a specified range of

the room. If a range of 0 is specified, the default range for the

yell command is used.

ZECHO prints the string to all players in the same area.

WECHO prints the string to all players in the same world.

GECHO prints the string to all players in the game.

Syntax: ROOM ECHO [string]

 ROOM ECHOAT [victim] [string]

 ROOM ECHOAROUND [victim] [string]

ECHO displays the string to everyone in the room. ECHOAT displays

the string to the victim only. ECHOAROUND displays the string to

everyone except the victim.

The three options let you tailor the message to goto victims or do

other sneaky stuff:).

Syntax: ROOM MLOAD [vnum]

 ROOM OLOAD [vnum] [level]

 ROOM VOLOAD [vnum] [victim] {'inventory'|'wear'}

MLOAD creates a mobile and places it in the room.

OLOAD loads the object into the room.

VOLOAD loads the object into either the inventory or wear slot

of a specified victim.

Syntax: ROOM REMOVE [victim] [vnum|'all']

Lets the room strip an object of given vnum from the victim.

Objects removed are destroyed. If the vnum is replaced with "all",

the whole inventory of the victim is destroyed. This command is

probably most useful for extracting quest items from a player

after a quest has been completed.

Syntax: ROOM PURGE [argument]

Destroys the argument from the room. Without an argument

the result is the cleansing of all NPC's and items from the room.

Syntax: ROOM TRANSFER [victim|'all'] [location] <silent>

 ROOM GTRANSFER [victim] [location] <silent>

 ROOM OTRANSFER [object|’all’] [location]

Sends the victim to the destination or to the room as a

default. if the victim is "all" then all the characters in the

room are transfered to the destination. Good for starting quests

or things like that.

Gtransfer works like transfer, except that the group the victim

belongs to is transferred with the victim. Otransfer transfers

an object in the room.

The silent parameter is optional, and will do a transfer without

the forced ‘look’.

Syntax: ROOM FORCE [victim|'all'] [command]

 ROOM GFORCE [victim] [command]

 ROOM VFORCE [vnum] [command]

Forces the victim to do the designated command. The victim is not

Told that they are forced, they just do the command so usually some

Rpecho message is nice. You can force players to remove belongings

and drop them, etc. The player sees the normal command messages

(such as removing the item and giving it away in the above example)

Again, if the victim is "all" then everyone in the room does the

command. Gforce works like force except that it affects the group

the victim belongs to.
Vforce affects all mobiles with given vnum

in the game world. This
is useful for, for example, purging certain type of NPCs from the game (by forcing them to purge themselves).

Syntax: ROOM DAMAGE [victim|'all'] [min] [max] {lethal}

Causes unconditional damage to the victim. Specifying "all" as

victim causes damage to all characters in the room.

Min and max parameters define the minimum and maximum amounts of

damage caused. By default, the damage is non-lethal, but by

supplying the optional 'lethal' parameter, the damage can kill the

victim. This command is silent, you must echo all messages yourself

in the program.

Syntax: ROOM ELEMDAM [victim|'all'] [damage] [element] [type]

Causes unconditional damage to the victim. Specifying "all" as

victim causes damage to all characters in the room except the

mobile. Unlike mob damage, when you specify the damage, it is

run through a randomization that will increase or decrease the

damage by 20%. Element may be specified to be one of the following

choices: black, green, red, white, yellow, blue, shadow, gravity,

magma, photon, lightning, blizzard, same, opposite, random or none.
Type may be specified as bash, pierce, slash (all three of which
are physical attacks) magical, or random. The element and type
specified will determine how damage is calculated and soaked based
on the defense of the victim.
Syntax: ROOM MDAMAGE [victim|'all'] [min] [max]

Causes unconditional mana damage to the victim. Specifying "all" as

victim causes damage to all characters in the room except the

mobile. Min and max parameters define the minimum and maximum

amounts of damage caused.

Syntax: ROOM DELAY

 ROOM CANCEL

ROOM DELAY sets the time in PULSE_AREA after which the room's

delay trigger is activated. If the room has a program defined

for delay trigger, the program is executed when the timer expires.

ROOM CANCEL resets the delay timer.

Syntax: ROOM REMEMBER [victim]

 ROOM FORGET

This command enables the room to remember a player for future

reference in a ROOMprogram. The player can subsequently be referred

as '$q' in programs activated by the room. ROOM FORGET clears

the target. Note that if the first time the room runs a program,

$q is automatically set to the player who triggered the event.

Most commonly this command is used in delayed programs, where the

room has to remember the player who triggered the original

event.

Syntax: ROOM CALL [vnum] {victim} {target1} {target2}

This command lets you call ROOMprograms from within a running one,

i.e. to call a ROOMprogram subroutine. The first parameter is the

vnum of the program to execute, the second is the victim's name

(for example $n), and the third and fourth are optional object

names. All other parameters except vnum can be replaced with

word 'null' indicating ignored parameter.

ROOMprograms can be called recursively, but as a safety measure,

parser allows only 5 recursions.

Syntax: ROOM SHIFT [color]
ROOM SHIFT will push the elemental field of the room toward a specified color. If no color is specified, the color will default to a random element.

Syntax: ROOM LOCK [direction]
This is designed to allow rooms to lock doors without the

required key and to do so silently. It will also automatically

close the door to lock it if necessary.

Syntax: ROOM UNLOCK [direction] open
This is designed to allow rooms to unlock doors without the

required key and to do so silently. If the ‘open’ value is

supplied, the room will automatically and silently open the door.

Syntax: ROOM ADDKEY [victim] [vnum]
Adds an item with the word ‘keyitem’ somewhere in it’s name

value to the player’s list of key items.

Syntax: ROOM REMKEY [victim] [vnum]
Removes an item from the player’s list of key items.

Syntax: ROOM REVIVE [victim|’all’] [full]
This will allow a room to bring a player back to life, or all

players within a given room. The last parameter full (or the word
‘yes’) can be supplied to make the revive be a ‘full’ revive with

corpse and item restoration.

Syntax: ROOM BLOCK [victim]

This will allow a room to block the next single action by a player.

This is particularly useful when combined with the ‘move’ trigger

in order to create an ‘exall’ type affect with more ease if some

conditions will allow the player to pass.

Syntax: ROOM DESC [set/format/reset] [string]

The first argument determines what the function does. Using ‘set’

will allow the mob to set the room’s description to the ‘string’

provided. Using ‘format’ will format whatever description is

currently set, while the string argument is ignored in this case.

Using reset will put the description back to what it was

originally. Normal room resets will also put the description as it

was.

Syntax: ROOM NIGHTDESC [set/format/reset] [string]

The first argument determines what the function does. Using ‘set’

will allow the mob to set the room’s description to the ‘string’

provided. Using ‘format’ will format whatever night description is

currently set, while the string argument is ignored in this case.

Using reset will put the night description back to what it was

originally. Normal room resets will also put the night description

as it was.

Syntax: ROOM EXIT [dir] [flag|vnum]

This will allow a room to TOGGLE the exit flag of any specific

exit. The exit flag can be toggled back to the way it was, and

upon a room reset the original exit flags will be reset. If a vnum

is supplied instead of a flag, it will temporarily change the vnum

that the exit is linked to.

Syntax: ROOM ROOM [flag]
This will allow a mob to TOGGLE the room flag of itself. The room
flag can be toggled back to the way it was, and upon a room reset
the original room flags will be reset.

Syntax: ROOM SECTOR [flag]
This will allow the room to toggle its sector flag.

Syntax: ROOM SYMBOL [flag]
This will allow the room to toggle its world map symbol.

Syntax: ROOM RESET [area]

This will force a reset on the room itself. The area

argument is optional and if supplied will reset the entire area.

Syntax: ROOM LOOKDESC [string]

This is only to be used in combination with the LOOK trigger. It
creates a temporary description that will supply to the player when
successfully triggered.

Syntax: ROOM MAKEPET [victim] [target]
This will make the target a pet of victim as per the pet system.

This will fail if the player is already at their pet maximum. It

may be best to use the if check ‘maxpets’ before trying this.

Syntax: ROOM ADDCOMP [victim] [vnum] [level]
This will add a companion to the player of the specified vnum. The

level parameter is optional, and if set, will make the companion

the specified level. A number or a variable may be used. This

follows normal companion limits, so the ‘maxcomp’ if check is

recommend to be used.

Syntax: ROOM REMCOMP [victim] [vnum]
This will remove a companion of the specified vnum from the player.

Syntax: ROOM ADDSPEC [victim] [spec_fun]
This will add to or change the spec_fun on a mob or player. If the

mob is a companion and the new spec_fun isn’t a class based one,

this will remove the mob’s compdata, making it no longer a valid

companion.

Syntax: ROOM REMSPEC [victim]
This will remove any spec_fun from a mob or player. If the mob is

a companion, this will remove the mob’s compdata, making it no

longer a valid companion.

Syntax: ROOM WAKE [victim]

This will force the victim to wake up, regardless of sleep affects.

Syntax: ROOM WAIT {victim} {# of pulses}

This command will cause the victim a certain amount of wait state,

based upon the number of which is set. This number is the number

bf pulses. There are 4 pulses per second, thus there are 240

pulses per tick. 1 tick = 1 minute.

Syntax: ROOM PUSH <victim|all> [exclude]

This will push players out of the room in a random direction. If

all is supplied then the optional exclude parameter is ignored, and

all players and NPCs will be pushed out of the room. If a victim

is supplied and exclude is not yet, it will push only that

character out of the room. If a victim is supplied and exclude is

set, it will push everyone except for the target out of the room.

If an exit is jump/crawl/climb, then it will force a

jump/crawl/climb on the moving target. If the exit a closed door

that isn't trapped or locked, it will open the door, push the

player through, and then reclose the door.

Syntax: ROOM WMAP [victim|all] [vnum] [size]
NOT IN USE! Old world map system, would echo the world map view to
the player based on the vnum specified and the size listed.

Syntax: ROOM STAGGER [victim] [# of seconds]
Will add or induce stagger on the victim.

Syntax: ROOM OLMAP [victim|all] [map#|ch] [x|ch] [y|ch] [symbols?]
Displays the world map view to victim (or all) according to the
coordinates specified. The string “ch” may be supplied in place of
numbers to substitute the victim’s map values. The symbols value
may be “false” or “no” to disallow the display of world map custom
symbols. Blank or any other value will default to true.

Syntax: ROOM REMAFF [victim] [affect|all]
Will strip a character of a specified affect or all.

Syntax: ROOM REPEAT [victim]
For use with the alias trigger, it repeats the command otherwise
blocked by the alias trigger but ignores the prog and allows it to
fire normally. This allows conditional use of the alias trigger.
If a player attempts to do a command that would fire differently
based on a variable or some other condition, the command would
otherwise fail if the conditions aren’t met. By using ‘repeat’
outside of the conditions, the command may still fire as normal
when the conditions aren’t met.

Syntax: ROOM SLAY [victim] [character]
Will instantly kill the victim, attributing the kill to the
character specified.

Syntax: ROOM SETCARD [victim] [card] [+/-/amount] [amount]
Will directly set, add, or subtract Triple Triad cards from a
player.

Syntax: ROOM SETQUEST [victim] [add|remove> [variable name]

Adds or removes an entry for the quest that uses the given variable
to the player’s journal.
Syntax: ROOM QTRACKER [victim] [string]
Sends the target a custom quest tracker update if the tracker isn’t
silenced. Use this to replace the tracker for pages that have been
marked silent.

Syntax: !ROOM ADDPCPROG [victim] [vnum] [trigger] [phrase]
Will add a PC prog to PC victim.

Syntax: !ROOM DELPCPROG [victim] [vnum]
Will delete a PC prog from PC victim.

Syntax: !ROOM ADDRESET [number] [mob|obj] [vnum] [location]
Adds a reset to the room, following the same command structure as
OLC.

Syntax: !ROOM DELRESET [number] [mob|obj]
Deletes a specified reset. The number supplied may be a vnum or
the number of the reset itself, as per OLC. Highly advised to only
ever use the vnum in this instance.

Syntax: !ROOM SFKAR [victim] [good/evil/neutral]
This will promote to their 1st promotion class someone based on their alignment.

Syntax: ROOM ADDGUILD [victim] [clan]
Adds a PC to a specified guild if they aren't already in one of

that type.

Syntax: ROOM REMGUILD [victim] [clan]
Removes a PC from a specified guild.

Syntax: ROOM PROMOTE [victim] [clan]
Increases the rank of a PC in the specified clan.

Syntax: ROOM DEMOTE [victim] [clan]
Decreases the rank of a PC in the specified clan.

Syntax: ROOM SETRANK [victim] [clan] [rank]
Sets the rank of a PC in the specified clan.

Syntax: ROOM SETDIV [victim] [clan] [divsion]
Sets the division of a PC in the specified clan.
Syntax: ROOM SETREP [victim] [faction] [value]
Adds or subtracts victim's faction reputation. Faction argument
may be name of faction, or 'here' / 'region' for area the victim is

in.

Syntax: ROOM VAR [victim] [var_name] [+, -, *, /, =] [values]
This will set and manipulate values on players. The appropriate

values are the var_name itself, any number, or the following

character values: hp, maxhp, mp, maxmp, defense, mdefense, hitroll,

level, damroll, power/pwr, vitality/vit, willpower/wil,

agility/agi, attack, speed, castlevel, crit (for crit rate),

castcap, evade, room (vnum that victim is in), elem1 or elem2 for
innate elements. Additionally, you may use rand <high> <low> to
choose randomly between a number
range. You may also use
variables (which you need to first assign
in your prog) as
min/max damage for 'mob damage'. You may also
‘skill <skillname>’
to assign the percentage of the specified skill
to the
variable.

Special variables:
norecall – will make a character unable to recall
Syntax: ROOM VAR [victim] [var_name] persist
This will cause the variable to save on the player To erase it,

make it equal 0.

NOTE: Immortals may use the variable command for various things.

Also, ‘variable [victim] dump’ will show a player’s variables.

Syntax: ROOM VAR [victim] [var_name] [timer/level] [value]

These values will denote a variable to expire after a certain

number of ticks or once they reach/surpass a specified level.

Syntax: ROOM VARPOS [victim] [var_name] [+, -, *, /, =] [pos] [value]
This will set and manipulate single digit of a value of a variable.

The position value determines what digit in the number will be

modified. For example, a position value of 3 will modify the 3rd
digit of a numerical string. The value is the number by which the

specified digit will be modified.

Example: varpos $n testvar = 3 5

This will change the 3rd digit of the var testvar to the number 5.

Note that the total value of the modification cannot be over 9,

as it has to be a single digit.

NOTE: This is useful in tracking multiple values within one

variable rather than having to use multiple variables. This was

specifically added for treasure chest tracking, as each digit in

a 10 digit numerical string corresponds to a specific chest

somewhere in the world. If the variable on the player in that

particular digit equals 0, then the chest has not been opened, but

if it equals 1, then it has.

Syntax: ROOM SHOWVAR [number] [value]

 ROOM SHOWVAR [number] [victim] [variable]

Creates “tokens” that programs can use to store, track, and use in
other ways. The tokens are usable in the form of $1, $2 through
$9.

Using ‘room showvar 1 100’ will set $1 to 100.

Using ‘room showvar 6 $n tmpvar’ will set $6 to whatever $n’s
tmpvar variable value is.
Syntax: ROOM SHOWVTIMER [number] [value]

 ROOM SHOWVTIMER [number] [victim] [variable]
A variation of showvar, it sets the token to the value of the
variable’s timer, if present.
Miscellaneous Information

There is really no limit to the number of Programs a given

mobile/object/room can have. However, the length of a single command

block is limited by the value of MAX_STRING_LENGTH. In my version it was

around 4k, so that is probably about 100 lines. The indentation spaces

shown in the example above are NOT required, but do make it easier to

read (and debug). HOWEVER, all spaces and indentations are loaded into

memory as a part of the program, so you're using up memory unnecessarily.

Memory usage can also be reduced by using subroutines (see MOB CALL).

It IS possible to accidentally make mobiles/objects/rooms which can

trigger in loops. Infinite loops have been prevented, but in case of a

loop, the behavior is undefined.

CREDITS

The reason this code was written was to enhance the playing

experience at ThePrincedom (a Merc 2.0 based world scheduled to open in

October 1993)

The original idea for this type of MOBprogram came from playing on:

WORLDS of CARNAGE, a dikumud implemented by Robbie Roberts and Aaron

Buhr. Aaron (known as Dimwit Flathead the First) was the original author

from what I have been told, and I hope he will not be totally offended

and angered by my coding and sharing a mimicked version with the world.

This version is probably not as good as the original and I do feel

remorse for publishing the idea. However, since Carnage has been down for

months without a word of information regarding its return, I am glad to

let one of the best features live on in future generations of MUDs.

There are no objections to this code being shared, since, aside

From a nuclear destruction of all the Temples of Midgaard (excepting the

Original one!!), bland mobiles are the greatest bane of Dikumuds today.

It would be nice to get a message saying you are using the code just for

our references. We shant answer questions from anyone until told where they are using the code. *grin* Since this code is not copyrighted, you

of course dont have to do anything we say, but it would be nice of you to

put the mobprog help screen into your database. and have mobinfo show up

somewhere on a more visable help screen (possibly tagged onto the bottom of credits as a see also...)

I acknowledge all the work done by the original Diku authors as

well as those at Merc Industries and appreciate their willingness to

share code. Also, quick thanks to Wraith for doing a little beta-

installation testing.

N'Atas-Ha June, 1993

natasha@gs118.sp.cs.cmu.edu

In addition to this DOC file credit section, I'd like to add

a thank you to Yaz, Mahatma, Zelda, and the rest of the 4th Realm crew

for extensively testing MOBProgram 2.1 for me. You may see MOBPrograms

in action as well as their own "flavor" of mud at marble.bu.edu 4000.

Kahn

 Oct 28th, 1993

MERC Industries

This driver was rewritten by me in summer '95. I also added

room and object programs (not in ROM 2.4 version). While I acknowledge

the skill and insight of the above people who conceived the original

MOBprogram idea, they should not be held responsible in any way for this release. I can't promise I will be able to support this code in the

future, use at your own risk. However, if you're using this code, and/or

have bug reports or improvements, I'd be glad to hear from you. The

revised MOBprograms can be seen in action at Imperium Gothique, mud.pitek.fi 4000. This code may be freely used and distributed, but some

favorable publicity (such as having my name appended to your in-game

credits) would encourage me to develop this software.

Newt@Imperium Gothique

May 1995-Jan 1996

mn54196@uta.fi

(am I lazy or what?)

I added object and room programs for ROM 2.4 version in winter of

2000. My thanks to the previous people who developed the original

MOBprogam code from which I developed the object and room programs. If

you are using this code, it would be nice to get a message saying so, but

you don't have to. This code is also only "half-supported" I don't have

time to personally aid everyone who has a problem, but if you do find a

bug, I would appreciate an email about it so I can fix it and

redistribute this code minus bugs:)

My thanks also to Elderon@Gateway to the Night along with the rest of the

staff and players of Gateway to the Night who were the guinea pigs for

this code and found many bugs (all of which have been fixed).

--Ralgha December 2000

ralgha@gatewaynight.betterbox.net

This version is specifically designed for new features added by

the various implementors of Cleft of Dimension and End of Time. There have been additions made to the programs by Guion, Leer, Tyladras, Vyers, and Diablos.

You can visit End of Time (A Final Fantasy themed MUD) at:

eotmud.com port: 4000

--Joseph Benfield, aka Diablos

hades_kane@hotmail.com
QUICK REFERENCE SHEET

Program quick reference to triggers/variables/ifchecks/mobcommands

#MOBILES

addmprog {program vnum} {trigger} {argument}~

#OBJECTS

addoprog {program vnum} {trigger} {argument}~

#ROOMS

addrprog {program vnum} {trigger} {argument}~

#MOBPROGS

medit {program vnum}

code

#OBJPROGS

oedit {program vnum}

code

#ROOMPROGS

redit {program vnum}

code

trigger argument and what must happen to activate trigger
act STRING
to match from act() to mobile, for obj and rooms

it matchs acts TO_ROOM and TO_NOTVICT

speech STRING
to match in dialogue (say, tell) to mobile,

matches says in the room for objects and rooms

rand PERCENT
chance to check whenever a PC is in the

mobile/object/room's zone

bribe INTEGER
miminum amount of silver coins given to mobile

ONLY MOB

give OBJECT NAME, OBJECT VNUM or ALL to match when obj given to

mobile, for objects: fires when the object with

the tirgger is given, for rooms: fires when

object is given in the room.

greet PERCENT
chance to check if visible char enters mobile's

room, for objects and rooms it is basically grall

grall PERCENT
chance to check when any char enters mobile's

room MOB ONLY

entry PERCENT
chance to check when mobile moves to a new room

MOB ONLY

exit EXIT NUMBER
a visible char tries to exit mobile's room, for

objects and rooms it is basically exall

exall EXIT NUMBER
any char tries to exit mobile's room MOB ONLY

kill PERCENT
chance to check when the mobile begins fighting

MOB ONLY

fight PERCENT
chance to check at fight_pulse if mobile is

fighting, object is worn in a fight, or there is

a fight in the room

hpcnt PERCENT
lower than mobile's hit/max_hit if mobile is

fighting MOB ONLY

death PERCENT
chance to check after mobile has been slain MOB

ONLY

surr PERCENT chance to activate when a char surrenders to

mobile MOB ONLY

hour
 HOUR # Every X hour it will activate MOB ONLY

tick
 PERCENT
Will activate X% of ticks MOB ONLY

pulse
 PULSE #
Will activate every X pulse

ifcheck argument(s) meaning

rand num

 Is random percentage less than or equal to num

mobhere vnum

 Is a NPC with this vnum in the room

mobhere name

 Is a NPC with this name in the room

objhere vnum

 Is an object with this vnum in the room

objhere name

 Is an object with this name in the room

Mobexists name

 Does NPC 'name' exist somewhere in the world

objexists name

 Does object 'name' exist somewhere in the
 world

- -

people == integer
 Is the number of people in the room equal to
 integer

players == integer
 Is the number of PCs in the room equal to
 integer

mobs
 == integer Is the number of NPCs in the room equal to
 integer

clones == integer Is the number of NPCs in the room with the
 same MOB ONLY

hour
 == integer Is the hour (game time) equal to integer. MOB

 ONLY

pulse == integer Is the current pulse equal to integer. There
 are 15 pulses per tick. MOB ONLY

- -

isnpc $*

 Is $* an NPC

ispc $*

 Is $* a PC

isgood $*

 Does $* have a good alignment

isneutral $*

 Does $* have a neutral alignment

isevil $*

 Does $* have an evil alignment

isimmort $*

 Is $* an immortal (level of $* > LEVEL_HERO)

ischarm $*

 Is $* affected by charm

isfollow $*

 Is $* a follower with their master in the room

isactive $*

 Is $*'s position > POS_SLEEPING

isdelay $*

 Does $* have a delayed MOBprogram pending

isvisible $*

 Is $* visible to NPC who activated the program

hastarget $*

 Does $* have a MOBprogram target in the room

istarget $*

 Is $* the target of NPC who activated the
 program

- -

affected $* 'affect' Is $* affected by 'affect'

act $* 'act' Is $*'s ACT bit 'act' set

off $* 'off' Is $*'s OFF bit 'off' set

imm $* 'imm' Is $*'s IMM bit 'imm' set

carries $* 'name' Is $* carrying object 'name'

wears $* 'name' Is $* wearing object 'name'

has $* 'type' Does $* have object of item_type 'type'

uses $* 'type' Is $* wearing object of item_type 'type'

name $* 'name' Is $*'s name 'name'

pos $* 'position' Is $*'s position 'position' (sleeping etc.)

clan $* 'name' Does $* belong to clan 'name'

race $* 'name' Is $* of race 'name'

class $* 'name' Is $*'s class 'name'

objtype $* 'type' Is $*'s item_type 'type'

- -

vnum $*
== integer
 Is $*'s virtual number equal to integer

hpcnt $*
== integer Is $*'s hitpoint percentage equal to integer

room $*
== integer Is vnum of the room $* is in equal to

 integer

sex $*
== integer Is $*'s sex equal to integer

level $*
== integer Is $*'s level equal to integer

align $*
== integer Is $*'s alignment equal to integer

money $*
== integer Does $* have money (in silver) equal to
 integer

objval# $*
== integer Is $*->value[#] equal to integer (# from 0-4)

EXAMPLES

These examples all use MOBprogs, OBJ and ROOM progs are done in the same formate (excepting the

trigger on each obj/room).

In Medit:

Addmprog 1000 act ‘pokes you in the ribs.’

In the Code editor:

if isnpc $n
 chuckle
 poke $n
 break

else
 if level $n <= 5
 or isgood $n
 tell $n I would rather you didnt poke me.
 else
 if level $n > 15

 scream

 say Ya know $n. I hate being poked!!!

 if mobhere guard

 mob force guard kill $n

 endif

 kill $n

 break
 endif
 slap $n
 shout MOMMY!!! $N is poking me.
 endif

endif

~

Ok.. time to translate.. the trigger will only happen when the mobile

gets the message "... pokes you in the ..." If the offender (recall

the $n and $N refer to the char who did the poking...) is an NPC, then

the mobile merely chuckles and pokes back. If the offender was a PC

then good and low level characters get a warning, high level chars

get attacked, and midlevel chars get slapped and whined at.

Also, when attacking, the mobile will check if there are guards in the

room (if mobhere guard) and if one is found, it will be forced to

attack the player, too (mob force guard mob kill $n). Notice the

use of a MOBcommand "mob force".

Note that two of these mobiles could easily get into an infinite poke

war which slows down (or frequently crashes) the mud just a bit :(

Be very careful about things like that if you can. (i.e dont respond

to a poke with a poke, and try not to let heavily programmed robot mobiles

wander around together. More on that is given above.)

Also, it is clear that the 'order' command could get confused with the 'or'

control flow. However, this is only the case when 'order' is abbreviated to

its two letter form, and placed immediately following an 'if' line. Thus,

if you want to be that malicious in trying to break the MOBprogram code,

noone is going to stand in your way (However, the result of this would be

a bug message and a bail out from the ifcheck so things dont really break)

Another example:

This program could be used on a temple guardian mobile, whose job is to

prevent evil characters from entering the sanctuary. Let's assume

the exit to the temple is north (exit 0) and the temple antechamber is

room 2301

In MEDIT:

Addmprog 1001 exit 0

In the Code editor:

if isgood $n
 say Hail!
 emote salutes $n.
 if carries $n holy
 mob transfer $n 2301
 else
 say If you wish to enter the temple, get a holy symbol.
 endif

else
 curse $n
 say Get lost, you scum!

endif

~

How this works: The trigger is activated when the player tries to exit

north from the room. If the player is of good alignment, the guard will

greet the player. However, the guard will not let the player to the

temple unless he or she carries a holy symbol. If the player is neutral

or evil, the guard will curse and block the way.

Example of using DELAY and REMEMBER:

In Medit:

Addmprog 1002 greet 100

Addmprog 1003 delay 100

In the Code editor:

(mprog 1002)

if isevil $n
 say You infidel! Go away or face the wrath of mighty Mota!
 mob remember $n
 mob delay 10
 break

endif

(mprog 1003)

if hastarget $i
 growl
 mob echo $I screams and attacks $Q.
 mob kill $q

else
 mob forget

endif

~

How this works: When the player enters a room, the mobile checks if the

player is evil. If this is the case, the mobile makes the player the

target (mob remember) and sets up a delay of 10 * PULSE_MOBILE.

When the delay expires, program #1003 is activated. The mobile checks

if the target is still in the room (hastarget), and if the player hasn't

left, the mobile attacks ($q and $Q refer to the target). If the player

has left, the mobile will forget the player (mob forget).

Example of MOB CALL:

In Medit:

Addmprog 1004 greet 100

In the Code editor:

if isgood $n
 mob call 1005 $n null null

else
 mob call 1006 $n null null

endif

(mprog 1005)

mob echo Suddenly, a bright aura surrounds $I!

mob cast 'heal' $n

(mprog 1006)

mob echoat $n $I points $l finger at you in fury!

mob echoaround $I points $l finger at $N in fury!

mob cast 'curse' $n
